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Abstract. Adaptive management has emerged as the prevailing approach for combining environmental
research and management to advance science and policy. Adaptive management, as originally formulated by
Carl Walters in 1986, depends on the use of Bayesian models to provide a framework to accumulate knowl-
edge. The emergence of ecological forecasting using the Bayesian framework has provided robust tools and
supports a new approach to informing adaptive management, which can be particularly useful in developing
policy for managing infectious disease in wildlife. We used the potential infection of elk populations with
chronic wasting disease in the Jackson Valley of Wyoming and the National Elk Refuge as a model system to
show how Bayesian forecasting can support adaptive management in anticipation of management challenges.
The core of our approach resembles the sex- and age-structured, discrete time models used to support manage-
ment decisions on elk harvest throughout western North America. Our model differs by including stages for
CWD-infected and unaffected animals. We used data on population counts, sex and age classification, and
CWD testing, as well as results from prior research, in a Bayesian statistical framework to predict model param-
eters and the number of animals in each age, sex, and disease stage over time. Initial forecasts suggested CWD
may reach a mean prevalence in the population of 12%, but uncertainty in this forecast is large and we cannot
rule out a mean forecasted prevalence as high as 20%. Using recruitment rates observed during the last two
decades, the model predicted that a CWD prevalence of 7% in females would cause the population growth rate
(λ) to drop below 1, resulting in population declines even when female harvest was zero. The primary value of
this ecological forecasting approach is to provide a framework to assimilate data with understanding of disease
processes to enable continuous improvement in understanding the ecology of CWD and its management.
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INTRODUCTION

Adaptive management promotes a useful
interplay among research, management, and

policy at large scales (Walters 1986, Walters and
Holling 1990). The approach has been applied to
a wide range of problems in terrestrial, freshwa-
ter, and marine systems all over the world
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(reviewed by Westgate et al. 2013). Adaptive
management as it was originally formulated in
the seminal work of Walters (1986) depends on
the use of models, specifically Bayesian models,
to help inform alternatives for management
action (e.g., Prato 2005, Nyberg et al. 2006,
Nichols et al. 2007, Stauffer 2008).

The emergence of ecological forecasting using
the Bayesian framework (Dietz 2017) has pro-
vided tools for adaptive management of wildlife
(e.g., Hobbs et al. 2015, Raiho et al. 2015, Ketz
et al. 2016, Andrén et al. 2020) that were compu-
tationally infeasible until relatively recently. We
use the term forecast to mean predictions of the
future accompanied by rigorous quantification of
uncertainty. Model forecasting supports a new
approach to informing management before antic-
ipated challenges become realized.

It is often the case that problems in natural
resource management can be anticipated before
they occur. Particularly compelling, contempo-
rary examples include biological invasions, dis-
ease outbreaks, and impacts due to climate
change (e.g., Westgate et al. 2013). In these cases,
the arrival of a pathogen or invasive species is
expected to cause problems for management
even though the agent has not yet arrived in the
managed system. Model forecasts can be con-
structed to explore the behavior of a complex
system before the problem occurs to clarify the
potential need for management action and
explore management options. The proper use of
informed prior distributions within the Bayesian
framework can allow reasonable forecasts on
system behavior even when system-specific data
are incomplete. Model forecasts also provide a
framework for statistical inference as data on the
emerging problem become available, and can be
useful for designing monitoring programs.

Chronic wasting disease
Chronic wasting disease (CWD) is a fatal prion

disease of the deer family (Cervidae) and is the
only known prion disease to circulate in wild
populations. It is primarily known to impact deer
populations (Edmunds et al. 2016, DeVivo et al.
2017) but has also been shown to impact Rocky
Mountain elk (Cervus canadenis nelsoni). CWD
can meaningfully reduce growth rates of popula-
tions of elk by causing declines in individual sur-
vival (Sargeant et al. 2011, Monello et al. 2014).

Prions may be spread directly or indirectly, medi-
ated by strong environmental persistence
(Georgsson et al. 2006), both of which may
increase in high-density populations.
Chronic wasting disease was first reported in

Colorado in 1967 but has since been identified in
wild populations in 26 states and two Canadian
provinces, as well as three Scandinavian coun-
tries (United State Geological Survey 2021). It has
been described as a formidable threat to deer
and elk populations in North America and con-
tinues to spread into new areas and achieve
higher levels of prevalence in endemic areas.
Managers are challenged to understand how
they can respond to this emerging threat.
Chronic wasting disease was only recently

detected in Rocky Mountain elk in northwestern
Wyoming during the 2020 hunting season (Wyom-
ing Game and Fish Department 2020a). Extensive
surveillance recently detected the first positive elk
case within the area near Jackson, WY, where
infected mule deer have been observed for several
years (Wyoming Game and Fish Department
2018). It appears to be a matter of time until the
disease becomes more prevalent in the high-
density elk population, which inhabits the
National Elk Refuge and adjacent areas during
winter, hereafter collectively referred to as the Jack-
son elk herd. Although this model was completed
for managers in 2016 using data available at that
time, the results remain valid and increasingly rele-
vant in light of the recent detection of CWD.
We use the expected arrival of CWD on the

National Elk Refuge as a model system to illus-
trate supporting adaptive management through
model forecasting. We constructed a Bayesian
state-space model of the elk population around
Jackson, Wyoming. We use the model to forecast
potential short-term effects of CWD on the popu-
lation and to better understand the relationship
between disease prevalence and elk population
trajectory. We show how the model can inform
alternatives for management and create a reposi-
tory for data useful for monitoring the future
effects of the disease.

Study area
Although CWD has not reached epidemic

levels in the Jackson elk herd, it has been
detected in sympatric mule deer (Odocoileus hemi-
onus) and in a single harvested elk in Grand
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Teton National Park in 2020. Previous research
suggests that the disease will continue to slowly
spread in a fashion that has been described as an
“epizootic with a protracted time-scale” (Miller
et al. 2000). Observations from captive and free-
ranging herds suggest CWD may have greater
impacts on elk in relatively high-density settings
(e.g., Peters et al. 2000, Williams and Miller 2002,
Monello et al. 2014). Given the high winter den-
sity and the profound importance of the Jackson
elk herd to ecosystem processes, human liveli-
hoods, and recreational opportunities in this
region, it is prudent to use existing data to help
understand potential implications of CWD on
this elk population and to plan for managing and
monitoring its impacts.

Supplemental winter feeding of elk has
occurred on the National Elk Refuge (hereafter
the refuge) for over 100 yr. This practice typically
results in a highly concentrated elk herd from
January to April. The Bison and Elk Management
Plan (2007) identified an overarching strategy of
reducing reliance on supplemental feeding to
achieve management goals and objectives. To
date, reduction of elk population size and
improvements to available natural standing for-
age have been unsuccessful in reducing elk den-
sity on the refuge winter range. This is due in
part to a spatial redistribution of animals on to
the refuge, which has maintained high winter
densities and continues to pose a risk for disease
transmission (see Cole et al. 2015 for more).

Models developed previously made long-term
projections of the arrival and subsequent trans-
mission of CWD in the Jackson Hole area that
were highly uncertain, predicting an enormous
range of outcomes (e.g., Osnas 2011). This uncer-
tainty limits their value for guiding management
and policy. Uncertainty about the effects of CWD
on population dynamics of the Jackson Hole elk
herd could be reduced by using extensive demo-
graphic data are available for elk in this region
combined with data from studies of CWD in elk
elsewhere in the Rocky Mountains. This
approach is enabled by the use Bayesian state-
space models of disease transmission (Hobbs
et al. 2015) and recent CWD studies on free-
ranging elk (Monello et al. 2013, 2014, and
unpublished ongoing project data). The
approach can inform managers about how differ-
ing levels of CWD will interact with elk

recruitment and survival to determine the Jack-
son elk herd’s population trajectory tempered by
rigorous estimates of uncertainty.
We developed a Bayesian state-space model to

achieve three goals:

1. Examine the potential impacts of CWD on
dynamics of the Jackson elk herd.

2. Aid in designing future sampling for CWD
in the population.

3. Provide a proactive framework for assimi-
lating new data on herd health to guide
adaptive management of the population
(see Walters 1986).

METHODS

Modeling approach
Here, we provide a general overview of our

inferential approach, leaving detailed, technical
treatment of the mathematics and statistics to
Appendix S1. Inference is based on a matrix pop-
ulation model that annually updates a state vec-
tor (Caswell 1988). The state vector consists of
the number of individuals in four age and sex
classes (juveniles, yearling and adult females,
yearling males, and adult males) and two disease
states (infected and not infected with CWD). The
projection matrix is composed of parameters rep-
resenting survival, recruitment, and disease
transmission. The structure of our model closely
resembles the matrix models used to inform deci-
sions on harvest of ungulates throughout the
Western United States (e.g., White and Lubow
2002) as well as models used to model other dis-
eases of ungulates (Hobbs et al. 2015).
We fit the model using three sources of data on

the Jackson population: annual counts, demo-
graphic classifications, and CWD test results (see
Table 1 for details on data used). We use Markov
chain Monte Carlo (MCMC) methods to approxi-
mate the marginal posterior distributions of all
parameters and unobserved states conditional on
the data. These distributions reveal uncertainty
arising from the failure of the model to represent
population and disease dynamics (process vari-
ance) and from sampling and calibration error in
the data (observation variance). The process vari-
ance includes effects of alternative migratory seg-
ments of the population (Cole et al. 2015), which
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we did not incorporate explicitly into our
disease-focused model.

Estimating process variance separately from
observation variance enables forecasts of mean
predictions of the future state of the population
accompanied by rigorous, statistically defensible
estimates of uncertainty conditioned on the
model (Hobbs and Hooten 2015, Dietz 2017).
These forecasts can be used to understand the
short-term dynamics of the population infected
with CWD before CWD actually arrives.

We make inference on the effect of CWD on
population growth rate, the dominant eigen-
value of the linearized projection matrix, using
the values of survival, recruitment, and proba-
bility of transmission of CWD at each MCMC
iteration. We repeated this sampling for differ-
ent levels of CWD prevalence in the population,
allowing us to see how population growth rate
would change with different levels of preva-
lence. We further examined the potential influ-
ence that CWD may have on population growth
with and without harvest at past levels. When
included, harvest was set equal to 2011–2015
hunting levels.

We used posterior predictive checks (Hobbs
and Hooten 2015) to assure that the model is cap-
able of giving rise to the data. Lack of fit was
indicated if a discrepancy test statistic.

d ¼ ∑
T

t¼1
yt � ŷt
� �2 (1)

calculated on data sets simulated at each MCMC
iteration were consistently smaller or consistently
larger than the same test statistics calculated
from the observed data. We calculated the test
statistic for all data sets used to fit the model.

We present some technical components of our
model here, but leave much of the detail to

Appendix S1. The overall structure resembles
Hobbs et al. (2015); Ketz et al. (2016) and Raiho
et al. (2015). The purpose of the model is to exam-
ine the potential disease impacts on the popula-
tion’s dynamics, to aid in designing future
sampling for CWD in the population, and to pro-
vide a proactive framework for assimilating new
data on herd health. This framework can be used
to guide adaptive management of the population
(Walters 1986).
Notation.—Matrices will be notated in upper-

case bold font, vectors in lowercase bold, and
scalars in plain font. Greek letters will be used to
represent parameters. We will notate data using
the convention ydata type. All other quantities are
unobserved.

Deterministic model
State vector.—The state of the population at

year t is represented in a seven-element vector
ntð Þ representing four sex and age classes and
two disease states (Table 2).
Note that there are no infected juveniles, which

represents the assumption that animals do not
become infected with CWD before eight months
of age. This assumption is consistent with studies
of epidemiology of CWD in mule deer (Miller
and Williams 2003, Miller and Conner 2005). We
pool yearling and adult females into the same
class because preliminary analyses revealed that
the data do not allow us to separately identify
these states. This results in two annual age
classes for females; the first represents calves
which are eight months old at census, and the
second includes both yearlings (20 months old at
census) and all older adults.

Table 1. Data sets used for model fit. Note that no data
were obtained after 2015 which results in years 2016
and following serving as model forecasts.

Data type Amount available

Annual counts 18 yr (1998–2015)
Demographic classifications 18 yr (1998-2015)
CWD testing 3758 tests over 18 yr

(1998–2015)
Harvest estimates 18 yr (1998–2015)

Table 2. Elements of column vector ntð Þ representing
the state at model census of the National Elk Refuge
elk population.

State Definition

n1;t Uninfected juveniles of both sexes aged six months
n2;t Uninfected yearling and adult females aged

18 months and older
n3;t Uninfected yearling males aged 18 months
n4;t Uninfected adult males aged 30 months and older
n5;t CWD-infected yearling and adult females aged

18 months and older
n6;t CWD-infected yearling males aged 18 months
n7;t CWD-infected adult males aged 30 months and older

 v www.esajournals.org 4 October 2021 v Volume 12(10) v Article e03776

DISEASE ECOLOGY GALLOWAY ET AL.



Projection matrix.—The state of the population
in the absence of harvest can be updated using
the deterministic model.

nt ¼ Ant�1 (2)

where A is a seven × seven projection matrix
(Table 3; Caswell 1988). If all harvest occurs
immediately before census, then

nt ¼ Ant�1 � gt, (3)

where gt is a seven-element column vector speci-
fying the number of animals harvested from each
state during t� 1 to t. Note that we use the term
census to refer to the modeled time point within
the year, not a total count of all individuals.

The relatively brief interval between harvest
(which occurs during November–December) and
model census (which occurs in February) does
not justify a more complex formulation for
recruitment. Thus, we use Eq. 3 to represent
effects of harvest on population dynamics. See
Appendix S1: Timing of harvest for further discus-
sion of this choice.

Stochastic model
Process model.—The deterministic model

described here and more fully in Appendix S1
assumes that Eq. 3 is able to represent changes in
the state of the population perfectly. This is to say
that the model can account for all of the dynamics
of the population based on annually varying

harvest and time-invariant survival, recruitment,
and CWD transmission. However, there are many
influences on the population’s dynamics that are
indirectly incorporated through annual survey
data, but not included explicitly in Eq. 3, notable
among them predation, other diseases, weather,
poaching, density dependence, and non-linearities
of CWD transmission producing a time-varying
transmission probability. The data necessary to fit
a dynamic transmission model (e.g., density
dependence) simply do not yet exist so we chose
to avoid the numerous assumptions necessary to
fit that model.
We represent all of these influences stochasti-

cally by including everything not represented in
the deterministic model in a seven × seven vari-
ance–covariance matrix Σp. This matrix contains
four terms for process variance on the diagonal
and zeros elsewhere. We estimate separate pro-
cess variances for healthy juveniles, yearling and
adult females, and yearling and adult males, as
well as for infected adults. Process variances
were combined for stages that should have simi-
lar responses to environmental variance (Gaillard
et al. 1998, 2000). We assume that these process
variances are uncorrelated which reduces the
number of estimated parameters and allows for
model convergence. Similarly, we did not include
covariance terms to allow for convergence.
We can now represent the unobserved, true

state of the population as a probability

Table 3. Non-zero elements of the projection matrix A. See Table 5 for description of individual parameters.

Transition during t� 1 to t Element Value

Offspring produced per uninfected yearling and adult female a1;2 ϕ
1
4
3ρ

Offspring produced per CWD-infected yearling adult female a1;5 ϕ
1
4
4ρ

Uninfected juveniles to uninfected yearling females a2;1 1� αð Þϕ1 1� ψð Þ
Uninfected juveniles to uninfected yearling males a3;1 αϕ1 1� ψð Þ
Uninfected juveniles to CWD-infected yearling females a5;1 1� αð Þϕ1

2
1ψϕ

1
2
2

Uninfected juveniles to CWD-infected yearling males a6;1 αϕ
1
2
1ψϕ

1
2
2

Uninfected yearling and adult females to uninfected adult females a2;2 ϕ3 1� ψð Þ
Uninfected yearling and adult females to CWD-infected adult females a5;2 ϕ

1
2
3ψϕ

1
2
4

Uninfected yearling males to uninfected adult males a4;3 ϕ5 1� ψð Þ
Uninfected yearling males to CWD-infected adult males a7;3 ϕ

1
2
5ψϕ

1
2
6

Uninfected adult males to uninfected adult males a4;4 ϕ5 1� ψð Þ
Uninfected adult males to CWD-infected adult males a7;4 ϕ

1
2
5ψϕ

1
2
6

CWD-infected yearling and adult females to CWD-infected adult females a5;5 ϕ4

CWD-infected yearling males to CWD-infected adult males a7;6 ϕ6

CWD-infected adult males to CWD-infected adult males a7;7 ϕ6
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distribution reflecting the uncertainty that arises
from influences on the true state that are not rep-
resented in the deterministic model using.

log ntð Þ ∼ multivariate normal

log Ant�1 � gt
� �

, Σp
� �

: (4)

Eq. 4 represents the true state of the population
at time t as a seven-element vector of continuous
and non-negative, log-normally distributed ran-
dom variables with medians Ant�1 � gt and vari-

ances σ2
p ¼ σ2p:juvenile, σ2p:female, σ2p:male, σ2p:CWD

� �
.

See Appendix S1 for further technical model
details.

RESULTS

The diagnostics of Brooks and Gelman (1998)
and Heidelberger and Welch (1983) indicated
that all MCMC output retained for inference had
converged on marginal posterior distributions of
parameters and other unobserved quantities. We
observed no evidence of lack of fit (Table 4).

The posterior distributions for demographic
parameters diverged from the priors, indicating
that the demographic data resulted in parame-
ters more specific to the Jackson elk herd for
uninfected juvenile survival, uninfected yearling
and adult male survival, proportion of juveniles
surviving to the yearling stage that are male,
recruitment, and probability of transmission.
Specificity of parameters is evidenced by the
modified posterior distributions of parameters
relative to priors (Fig. 1, Table 5 and Appendix
S1: Table S2). The estimated parameter for dis-
ease transmission risk also shifted toward zero
because of extensive testing data showing no
positive cases in the Jackson elk herd. This
resulted in the posterior distribution of probabil-
ity of transmission shifting away from the prior

distribution and toward zero. Data caused small
shrinkage around the means of yearling and
adult female survival, confirming prior knowl-
edge.
The population was fairly stable from 1998 to

2005 and then showed a weak downward trend
until 2015 (Fig. 2; note that 2016 was treated as a
forecast due to pending CWD test results at the
time of the original report). Model predictions
were strongly influenced by sex and age classifi-
cation data (Fig. 3).
Eigen analysis revealed that infection of the

population with CWD is likely to drive the popu-
lation growth rate λð Þ below one (Fig. 4), indicat-
ing a decline in elk numbers over time. A
declining population becomes more probable
with increasing disease prevalence. We also
examined the relationship between CWD preva-
lence and growth rate with and without past
levels of hunting. The most probable threshold
between an increasing and a declining popula-
tion λ ¼ 1ð Þ occurred when prevalence of CWD
in yearling and adult females reached 7%. How-
ever, we cannot rule out a threshold as high as
23% prevalence before λ falls below one. The
probability that the current population growth
rate, in the absence of both hunting and CWD, is
less than one is 0.055. Recent (2011–2015) levels
of hunting reduced the population growth rate
significantly, but this is by design, as the state
and federal agencies were seeking to reduce
abundance of the Jackson elk herd. The addition
of CWD into the model leaves little possibility
that the population will grow (Fig. 4).
Model forecasts showed the potential for

CWD to reduce the abundance of the Jackson elk
herd (Fig. 5) if transmission is similar to the level
(0.08; BCI = 0.05, 0.12) observed by Monello et al.
(2014). This decrease corresponded to a popula-
tion growth rate less than one at the predicted
asymptotic prevalence of ∼12% (see predicted
prevalence in Fig. 5 and its relationship to popu-
lation growth rate in Fig. 4). Although there is
significant overlap in the forecasts for an infected
and uninfected population, it is clear that CWD
has the potential to decrease the population size.

DISCUSSION

Forecasts for the Jackson elk herd suggest that
the effects of CWD on population abundance are

Table 4. Posterior predictive checks using the discrep-
ancy statistic (Eq. 1). Lack of fit is indicated by Baye-
sian P values close to 0 or 1.

Observation Bayesian P value

Total counts 0.22
Proportion juveniles 0.45
Proportion yearling and adult females 0.52
Proportion yearling males 0.49
Proportion adult males 0.45
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likely to be slow to develop and difficult to
detect; there is strong overlap between predictive
process distributions for populations with and
without CWD (Fig. 5). The assumption of a con-
stant transmission probability over time drives
the observed forecasts. Time-invariant transmis-
sion is almost certainly not the case but

represents a starting point for transmission mod-
eling until parameters in a dynamic model can
be estimated from data specific to the Jackson elk
herd following infection. The refuge may offer an
unusual opportunity to obtain those data given a
long history of monitoring for CWD, with the
arrival of CWD presenting a unique opportunity

Fig. 1. Marginal posterior distributions (solid lines) and prior distributions (dashed lines), of model parame-
ters. Note that female and male refer to yearlings and adults and exclude calves.
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to understand the epidemic behavior of the dis-
ease over time. The Bayesian model reported
here would facilitate the development of the
understanding of dynamic transmission proba-
bility after disease invasion by providing a way
to assimilate data from multiple sources,
including annual count data and data from

prior studies in other locations. It enables the
comparisons of multiple theoretical models of
dynamic disease transmission with minor mod-
ification to the transmission function (See Miller
et al. 2006, Hobbs et al. 2015). It can also be
used annually to update the role of harvest and
disease and provide managers with the proba-
bility of attaining population goals in the ensu-
ing 1–3 yr (Ketz et al. 2016, Andrén et al. 2020).
Regardless, the model reveals that hunting and
disease mortality will likely act additively
resulting in higher mortality than would be
present in the absence of one or the other if
CWD becomes established and increases. Estab-
lishment and increases in CWD prevalence are
almost certainly more likely in areas of high
population density.
It is impossible to predict when or if CWD will

reach endemic levels in the Jackson elk herd.
However, there is no evidence to suggest the per-
formance of this herd will not be affected by the
disease in a way that resembles other elk popula-
tions (Sargeant et al. 2011, Monello et al. 2014).
In particular, we expect reduced adult survival
and population growth rate with increasing dis-
ease prevalence. There is evidence that these
effects might be even greater for high-density
populations, like those using the refuge within
the Jackson valley.
Model forecasts showed disease prevalence

increasing to an asymptote, but this result
depends on the assumed constant transmission
probability. It is reasonable to expect the mod-
eled transmission probability is excessively high

Table 5. Marginal posterior distributions of model parameters are summarized with means, standard deviations
(SD), and lower (2.5%) and upper (97.5%) highest posterior density intervals.

Model parameter Mean SD 2.5% 97.5%

Recruitment α 0.49 0.046 0.41 0.58
Uninfected juvenile survival ϕ1 0.76 0.072 0.62 0.9
Infected juvenile survival ϕ2 0.51 0.16 0.21 0.81
Uninfected yearling and adult female survival ϕ3 0.94 0.008 0.92 0.95
Infected yearling and adult female survival ϕ4 0.51 0.16 0.21 0.81
Uninfected yearling and adult male survival ϕ5 0.91 0.023 0.86 0.95
Infected yearling and adult male survival ϕ6 0.52 0.16 0.22 0.82
Probability of transmission ψ 0.067 0.015 0.038 0.098
Recruitment ρ 0.24 0.009 0.22 0.26
Process standard deviation for yearling and adult females σpf 0.11 0.03 0.055 0.17
Process standard deviation for juveniles σpj 0.093 0.05 0 0.17
Process standard deviation for yearling and adult males σpm 0.21 0.035 0.14 0.28

Fig. 2. Number of elk in the Jackson Elk Herd dur-
ing 1998 to 2015. The population showed a weak
downward trend during this time, coinciding with
management efforts to reduce abundance. Filled circles
are mean counts, and vertical bars are � 2 standard
deviations. Solid line is the median estimate of the
true, unobserved population size, and shaded areas
give 95% equal-tailed credible intervals. Vertical bars
show total harvest preceding census.
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Fig. 3. Model fit to data on population composition: (A) juveniles, (B) yearling and adult females, (C) yearling
males, and (D) adult males. Filled circles are the proportion observed in annual classification counts, and vertical
bars are � two standard deviations of the proportion. Solid line is the median of the unobserved, true population
composition. The shaded area gives 95% highest posterior density interval of the true proportion. High precision
results from the large amount of demographic data used, shown in Table 1.

Fig. 4. Estimated potential effects of chronic wasting disease on the growth rate of the Jackson elk herd popu-
lation differ with assumptions about hunting. Solid lines are the median of the marginal posterior distribution of
the discrete time population growth rate λ. Dashed lines give 95% equal-tailed credible intervals. The horizontal
dotted line is the threshold between population increase and decline. (A) Population growth rate assuming no
hunting and using recruitment estimated in this study. (B) Population growth rate with hunting and recruitment
estimated in this study. Hunting is estimated as a random variable from hunting removals observed during
2011–2015 and is included in survival of healthy and infected animals.
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in the years immediately after the arrival of
CWD, if environmental contamination becomes
the dominant mode of transmission, and exces-
sively low in later years. Data used from Rocky
Mountain National Park to estimate transmission

probability were collected well after the initial
CWD outbreak, giving time for disease establish-
ment. However, the density of elk in Rocky
Mountain National Park in winter is likely sub-
stantially lower than that on the refuge and on

Fig. 5. Forecast of the population size of the Jackson elk herd during 2016–2021 with and without CWD infec-
tion (upper panel) assuming CWD invades in 2016 with time-invariant disease transmission similar to that
observed in Rocky Mountain National Park (Monello et al. 2014). (A) Predictive process distributions of population
size with and without CWD present. Years 2016 and after reflect model forecasts, as 2015 was the last year new
data were obtained. Solid lines are the median of the predictive process distribution. Dashed lines are 95% equal-
tailed credible intervals. (B) Predictive process distributions of numbers of individuals in healthy and infected pop-
ulations in 2021. (C) Predictive process distributions of CWD prevalence in the infected population in 2021.
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feed grounds specifically. We hypothesize that
this higher density would lead to elevated rates
of disease transmission on the refuge, increasing
impacts on abundance.

Selection for genotypes with a longer incuba-
tion period for CWD that allows infected elk to
persist longer and continue reproducing has
been suggested to be able to decrease the disease
impact over a long timescale of more than 50 yr
(Williams et al. 2014). The potential for selection
of genotypes with a longer CWD incubation time
was not incorporated into our model. However,
we used survival and infection data from
infected cow elk that lived in a relatively high-
density population that has been exposed to
CWD for 30–50 yr (Monello et al. 2014) and the
effects of such selection would be incorporated in
survival outcomes. This means that the modeling
results in this paper are unlikely to be largely
influenced by prion genotype selection in the
next several decades, suggesting CWD-related
declines in population growth rate may at a min-
imum be prolonged over that time frame. This is
consistent with work to date that suggested the
effects of selection on prion genotypes will only
take root after 75–100 yr based on a scenario that
used “worst-case” transmission rates from a cap-
tive population that was confined to contami-
nated pens and “best-case” genetic resistance
with no trade-off or interaction with disease
dynamics or prion strains (Williams et al. 2014).

The model also does not currently consider the
potential decreases in recruitment by CWD-
infected females. This effect would further exac-
erbate the decline in growth rate with increasing
prevalence (see Dulberger et al. 2010), that
would in turn increase disease impacts on abun-
dance. This is one area where observation after
CWD invasion would provide valuable insight
to clarify the disease impact. Continued use of
this model along with annual counts and disease
data will provide valuable information on the
potential impacts of both selection and recruit-
ment.

The potential outcomes of CWD invasion into
the Jackson elk herd are complicated by the dif-
ferent migratory segments of the population and
their differential recruitment (Cole et al. 2015).
Disease processes may differ in these groups,
with the long-distance migrants perhaps having
a slight advantage by spending more time over a

larger area and at lower densities, thereby
decreasing prion exposure. However, both popu-
lation segments intermix at high densities on the
winter grounds which may negate such benefits.
Alternatively, improved body condition on feed
grounds may modify the disease process, or
interact with it in unexpected ways. For example,
higher body condition may keep infected ani-
mals alive longer leading to increased prion
shedding or allowing for further reproduction
before death. There also exists the possibility that
the higher observed recruitment for short-
distance migrants (Cole et al. 2015) may mitigate
the disease impacts on population growth rate as
long-distance migrants are lost. There are fore-
seen drawbacks to an increase in short-distance
migrants in the population, however, including
more vehicle collisions, more commingling with
livestock and property damage, and decreased
hunting opportunity.
We expect that the effects of CWD on other elk

populations in northwest Wyoming will be simi-
lar to those described here. This model could be
fit to demographic data from other herds to
examine those differences but until we have a
better understanding of the dynamic relationship
between density and disease transmission the
likely important differences in disease risk for
fed and unfed populations could not be included
without strong assumptions.
The model framework presented here is a first

step toward informing managers of the Jackson
elk herd of the possible population-level effects
of CWD. Given that the CWD effects in the
model were based on Rocky Mountain National
Park in a lower density elk population, it would
seem advisable to reduce the areas of higher con-
centration on the refuge before CWD reaches
endemic levels, which may prove to have a much
larger impact than that estimated here on
crowded herds typical of feed ground popula-
tions. Lower population densities may also have
the added benefit of increasing recruitment rates
(Proffitt et al. 2014), which are relatively low in
this population, and allow the population to both
handle a higher prevalence of CWD before λ is
reduced below 1 and allow for a greater propor-
tion of elk to be sustainably harvested on an
annual basis. As disease impacts become more
clear and if recruitment changes, newly available
data can be incorporated into the existing model
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framework on an annual basis, which will enable
adaptive management as it was originally con-
ceived by Walters (1986).

This model could support decision-making
regarding adaptive management as described in
the current approved management plans of the
Wyoming Game and Fish Department (Wyom-
ing Game and Fish Department 2020b) and the
National Elk Refuge (United States Fish and
Wildlife Service 2007). Specifically, the model
may be useful as the agencies evaluate experi-
mental management actions to slow the spread
and/or reduce prevalence of CWD. A plausible
adaptive management cycle may look like this:
Model predictions motivate a management
action (e.g., reduce density), the population is
monitored, monitoring data are used to improve
the model (e.g., the transmission function) which
is then updated for new predictions.

As future hunting season proposals are devel-
oped, managers could evaluate harvest rates on
various herd segments of the population relative
to estimated annual CWD prevalence. A key
question of interest would be, what levels of cow
harvest would be most likely to maintain the
population at objective levels or a growth rate of
interest given the current disease prevalence?

If managers wish to implement and evaluate
management actions to slow the spread and/or
reduce/limit prevalence of the disease, this model
could help them track disease progression over
time and disentangle the effects of management
actions. Those actions could potentially include
any of those discussed here, as well as others,
but would need to undergo the full process in
place by those managers, including public com-
ment and approval from decision makers.

Ecological forecasting fills an important func-
tional role in the implementation of adaptive man-
agement. Forecasting incorporates a quantification
of uncertainty given assumptions about system
behavior, and can inform managers about poten-
tial outcomes for unobserved future states. The
many advances in the field of Bayesian hierarchi-
cal modeling offer one tool for managers hoping
to implement adaptive management. The progress
of work in this field, when combined with modern
computational power, allows managers to explore
the potential relationships in unobserved systems
by combining data from multiple sources. This
can prove useful to managers in many scenarios,

including biological invasions, previously unex-
plored management actions, and as our example
illustrates, disease invasions.
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