Brucellosis And Its Management on Elk Feedgrounds

Brucellosis (Brucella abortus)

- Bacterial disease normally associated with cattle that causes abortion.
- Wildlife hosts: Bison and elk
- Susceptible hosts: Broad range of wild and
 - domestic animals
- Zoonotic disease

Brucellosis in Elk/Bison/Cattle

- Transmission: Contact with infected fetuses, fluids, milk
- Clinical signs: abortion, usually in the 3rd trimester, hygromas
- Can cause significant fetal losses in livestock ("abortion storms")
- Treatment is impractical
- Vaccination in cattle generally prevents disease (not effective in elk)

Brucellosis and Human Health

- Serious zoonotic disease
- Worldwide disease
 - 500K/year reported
- Undulant fever
- Malaise, fatigue, night sweats, depression, muscle and joint pain
- 6-8 week course of oral antibiotics usually clears symptoms (70% if treated early)
- Chronic infections with delayed treatment

Brucellosis & Human Health

Low risk during hunting season

- Bacteria not "active"
 - Can be found in bursa (joints) and lymph nodes
- Normally not found in meat
- Easily killed by cooking

Health risks after February 1st

- Bacteria becomes active in 3rd trimester of pregnancy
 - Fetus and associated fluids become infected

Why is Brucellosis a Problem for the Livestock Industry?

- Decreased production
 - Abortions as well as weak calves
- Transmission to other livestock (e.g. horses)
- Federal/State regulations for positive herds
 - Quarantine (can be very expensive)
 - Test and slaughter of positive animals
 - Loss of valuable animals/genetics
 - Increased testing/veterinary expenses
- Zoonotic

Brucellosis and the Livestock Industry

- A federal/state program began in 1934 goal of eradication by 1998
 - Except for the GYA, the United States is free of cattle brucellosis
- 2010 establishment of the Designated Surveillance Area (DSA)
 - Within the GYA, ~2.6 cattle/domestic bison herds exposed each year
 - Transmission from elk

Brucellosis Designated Surveillance Area (DSA) July, 2020

DECK SHIPTER WAS INTO THE PROPERTY.

Managing Brucellosis in the DSA

- Early detection in "high risk" herds
 - Movement restrictions
 - Increased testing (blood)
 - RB51 Vaccination
 - No silver bullet
 - Prevent abortion, but blood test positive following exposure
 - Quarantine exposed herds
- State maintains "Brucellosis Free" status

Background Terminology

- Serology (blood tests) measure serum antibody levels
 - Cannot determine if infected only exposed
 - Seropositive/seroprevalence = antibodies present in blood
 - Live animal test
- Culture confirms presence of *B.abortus*
 - Culture of fetal tissues or lymph nodes
 - Low sensitivity
 - Post mortem ("dead animal" test)

Brucellosis in Elk and Bison

- Introduced into GYA around civil war
 - First detected in bison in 1917, elk in 1930
- Loss of the first calf after infection
 - $\sim 82\%$ abortion rate in bison
 - $\sim 61\%$ abortion rate in elk which leads to $\sim 24\%$ reduction in reproduction of exposed animals (short and long-term effects).

Brucellosis and Feedgrounds

- Seroprevalence on feedground elk averages
 ~25%-30%
- Seroprevalence in bison
 ~65% (NER)

Distribution of Brucellosis in WY

Management of Brucellosis on Feedgrounds

WGFD Brucellosis Management

- Integrated approach
 - Surveillance
 - Elk/Cattle Separation
 - Habitat Enhancement
 - Feedground Management
 - Vaccination
 - Adaptive Management

Brucellosis Surveillance in Non-Feedground Elk

- Monitor brucellosis outside of feedgrounds
- Surveillance focused on hunter-killed cow elk
 - 8,000-10,000 blood collection kits mailed to hunters in target elk hunt areas (limited quota)
 - $-\sim$ 1,200–1,400 useable samples (32% successful hunters)
- Statewide coverage every 4-5 years
 - Yearly focus on DSA border
- 30 years of surveillance data (19,500+ samples)

Brucellosis Surveillance in Non-feedground Elk

Brucellosis Surveillance in Feedground Elk

Feedground Surveillance

Monitor brucellosis in feedground populations

– 3-5 Feedgrounds each year

Seroprevalence over time

Feedground Seroprevalence

Separation of Elk and Cattle

- Winter feeding
- Elk hazing
- Stack yard fencing

Habitat Enhancement

Feedground Management

Carcass Removal

Feeding on clean snow

Strain 19 Vaccination

- Began in 1985; discontinued in 2015
- Vaccinated ~2,500 calves annually
- Total vaccinated 1985-2015
 - 91,145 juveniles (99% avg. vacc/yr)
 - 19,336 adults (67% avg. vacc/yr)

March-May is Peak Transmission Period

Longer feeding season
= more disease

Truncation of feeding season in spring reduces the duration of high concentration

Disease transmission at the feedline

Maichak, et. al. 2009. Effects of management, behavior, and scavenging on risk of brucellosis transmission in elk of Western Wyoming. J Wild Disease.

75% Reduction in elk-fetus contacts

Elk/Cattle Brucellosis Transmission Risk Assessment

9 years of data from over 700 GPS collars from feedgrounds

