## TABLE OF CONTENTS Acknowledgement

Antelope
Chalk Bluffs (520) - Area 111 ..... 1
Hawk Springs(521) - Areas 34-36 ..... 9
Meadowdale (522) - Area 11 ..... 21
Iron Mountain (523) - Area 38 ..... 33
Dwyer (524) - Area 103 ..... 45
Medicine Bow (525) - Areas30-32, 41-42, 46-48 ..... 57
Cooper Lake (526) - Area 43 ..... 71
Centennial (527) - Areas 37, 44-45 ..... 83
Elk Mountain (528) - Area 50 ..... 95
Big Creek (529) - Area 51 ..... 113
Bighorn Sheep
Douglas Creek (516) - Area 18 ..... 137
Laramie Peak (517) - Area 19 ..... 145
Encampment River (519) - Area 21 ..... 155
Elk
Iron Mountain (531) - Areas 5-6 ..... 163
Snowy Range (533) - Areas 8-12, 110, 114, 125 ..... 177
Shirley Mountain (534) - Area 16 ..... 213
Rawhide (730) - Area 3 ..... 227
Moose
Snowy Range (545) - Areas 38, 41 ..... 235
Mule Deer
Goshen Rim (534) - Areas 15-16, 55, 57 ..... 255
Laramie Mountains (537) - Areas 59-60, 62-64, 73 ..... 269
Sheep Mountain (539) - Areas 61, 74-77 ..... 283
Shirley Mountain (540) - Area 70 ..... 297
Platte Valley (541) - Areas 78-81, 83, 161 ..... 311
White-tailed Deer
Southeast Wyoming (504) - Areas 16, 55, 57, 59-64, 70, 73-81, 83, 161327

## Acknowledgement

The field data contained in these reports was collected by the combined efforts of the Laramie Region Wildlife Division personnel including District Wildlife Biologists, District Game Wardens, the Wildlife Technicians, the Habitat Biologist, the Wildlife Management Coordinator and Region Supervisor, and other Department personnel and volunteers working at check stations. The authors wish to express their appreciation to all those who assisted in data collection.

## 2013 - JCR Evaluation Form

| SPECIES: Pronghorn |  | PERIOD: 6/1/2013-5/31/2014 |  |
| :--- | :---: | :---: | :---: |
| HERD: PR520 - CHALK BLUFFS |  |  |  |
| HUNT AREAS: 111 | PREPARED BY: MARTIN HICKS |  |  |
|  | $\underline{\text { 2008-2012 Average }}$ | $\underline{\mathbf{2 0 1 3}}$ | 2014 Proposed |
|  |  |  |  |
| Hunter Satisfaction Percent | $67 \%$ | $69 \%$ | $60 \%$ |
| Landowner Satisfaction Percent | $0 \%$ | $38 \%$ | $60 \%$ |
| Harvest: | 199 | 90 | 70 |
| Hunters: | 270 | 148 | 140 |
| Hunter Success: | $74 \%$ | $61 \%$ | $50 \%$ |
| Active Licenses: | 303 | 175 | 145 |
| Active License Percentage: | $66 \%$ | $51 \%$ | $48 \%$ |
| Recreation Days: | 1,277 | 568 | 400 |
| Days Per Animal: | 6.4 | 6.3 | 5.7 |
| Males per 100 Females: | 25 | 16 |  |
| Juveniles per 100 Females | 44 | 30 | $60 \%$ |
| Satisifaction Based Objective |  |  | Recreational |
| Management Strategy: |  | $-6 \%$ |  |
| Percent population is above (+) or (-) objective: |  | 1 |  |
| Number of years population has been + or - objective in recent trend: |  |  |  |



## Harvest



Number of Hunters


Harvest Success
$\square$ PR520 - Hunter Success \% PR520 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR520 - Days


Preseason Animals per 100 Females


2008-2013 Preseason Classification Summary
for Pronghorn Herd PR520 - CHALK BLUFFS

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls Obj | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Pre Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 0 | 2 | 24 | 26 | 19\% | 77 | 56\% | 35 | 25\% | 138 | 304 | 3 | 31 | 34 | $\pm 0$ | 45 | $\pm 0$ | 34 |
| 2009 | 0 | 1 | 15 | 16 | 11\% | 89 | 59\% | 46 | 30\% | 151 | 348 | 1 | 17 | 18 | $\pm 0$ | 52 | $\pm 0$ | 44 |
| 2010 | 0 | 0 | 17 | 17 | 15\% | 78 | 70\% | 17 | 15\% | 112 | 289 | 0 | 22 | 22 | $\pm 0$ | 22 | $\pm 0$ | 18 |
| 2011 | 0 | 1 | 14 | 15 | 13\% | 67 | 58\% | 34 | 29\% | 116 | 370 | 1 | 21 | 22 | $\pm 0$ | 51 | $\pm 0$ | 41 |
| 2012 | 0 | 4 | 11 | 15 | 19\% | 41 | 51\% | 24 | 30\% | 80 | 285 | 10 | 27 | 37 | $\pm 0$ | 59 | $\pm 0$ | 43 |
| 2013 | 0 | 0 | 11 | 11 | 11\% | 69 | 68\% | 21 | 21\% | 101 | 357 | 0 | 16 | 16 | $\pm 0$ | 30 | $\pm 0$ | 26 |

## 2014 HUNTING SEASONS CHALK BLUFFS PRONGHORN HERD (PR520)

| Hunt <br> Area | Type | Dates of Seasons <br> Opens |  | Closes | Quota |
| :---: | :---: | :--- | :--- | :--- | :--- | Limitations |  |  |  |  |  |
| :---: | :---: | :--- | :--- | :--- |
| 111 | 1 | Sept. 20 | Oct.14 | 100 |
|  | 6 | Sept. 20 | Oct.14 | 50 |
|  |  | Nov. 15 | Dec. 31 |  |
| Limited Quota; any antelope Quota; doe or fawn |  |  |  |  |
|  |  |  |  | Unused Area 111 Type 1 and Type 6 <br> licenses valid for doe or fawn |
| Archery |  | Aug. 15 | Sept. 19 |  |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 111 | 1 | 0 |
|  | 6 | -50 |

## Management Evaluation

Current Management Objective: Landowner and hunter satisfaction; Target goal $\geq 60 \%$
Management Strategy: Recreational
2013 Hunter Satisfaction Estimate: 67\%
2013 Landowner Satisfaction Estimate: 38\%
Most Recent 3-year Running Average Hunter Satisfaction Estimate: 69\%
Most Recent 3-year Running Average Landowner Satisfaction Estimate: 38\%
Population Estimate: ~400

## Herd Unit Issues

The management objective for the Chalk Bluffs Pronghorn Herd Unit was a numeric post-season population objective and was changed starting in 2013 to a landowner and hunter satisfaction objective of $60 \%$ satisfaction. The change was based on public involvement during the 2013 herd objective review process. The management strategy is a recreational management with a pre-season buck ratio range of 20-59 Bucks: 100 Does.

This herd unit is predominately private land with little public access. Urban and industrial development has decreased the amount of occupied habitat. Pronghorn do move into Wyoming from Colorado when weather events occur and pronghorn become dependent on winter wheat resulting in damage complaints from landowners. To address this problem there is a late season doe/fawn license available to hunters.

There is not a postseason population estimate for a variety of reasons: 1) Open population with Colorado and Nebraska, 2) Restricted access due to urban encroachment and industrial gas development, which prevents our ability to influence harvest, 3) Poor classification data, which is always well below the adequate sample size and 4) No reliable working model.

## Weather

Weather during 2013 was mild with above average precipitation in August and September providing additional forage to put pronghorn in good condition going into the 2013/14 winter. However, an early October snow storm most likely stressed pronghorn and could have contributed to higher than normal mortality rates. Refer to the following website links for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

We have not established habitat transects in this herd unit, nor do we intend to. Pronghorn in this herd unit are dependent on agricultural fields when they are not in Colorado. Seasons are designed to reduce damage when densities increase past the comfort levels of landowners.

## Field Data

Due to our inability to collect data there is little confidence in classification data. Comparison to the adjacent Hawk Springs Herd Unit where fawn ratios have increased, it was expected that the same held true for this herd unit, resulting in an increase in the population. This herd unit is challenging to manage due to interstate movement into Colorado and an increase in industrial and residential expansion, license numbers will remain conservative. A sharp decline in success and an increase in effort for Type 6 licenses have resulted in a proposed decrease of 50. Type 1 licenses will remain at 100. A late season license will continue to be available to address damage concerns when pronghorn move in from Colorado. The landowner and hunter satisfaction survey showed that $69 \%$ of the hunters were satisfied and $38 \%$ of the landowners were satisfied. This is the first year that the objective is a satisfaction survey so there is not a three year running trend for landowners. The small sample size ( $\mathrm{n}=13$ ) does not provide a reliable response. However, the $38 \%$ that were satisfied is plausible given the concerned comments received from landowners regarding crop damage. The three-year running average of $69 \%$ for sportsmen is surprising given there is little access and fewer pronghorn available to harvest.

## Harvest Data

Hunter harvest success in 2013 decreased by 18\% (refer to page 2 of the JCR). This is plausible given poor access and an increase in urban and industrial development. Hunter effort was similar in 2013 compared to the five-year average. It is difficult to ascertain the reason for the similar effort. License numbers decreased as a result of past success and effort and perceived population trends. Lack of access and a decrease in the population should result in an increase in effort. Perhaps the hunters that did have access were able to take advantage of the pronghorn movement from Colorado into Wyoming later in the season.

## Population

There is not a reliable working model for this herd unit due to lack of classification and harvest data in conjunction with an open population due to movement into Colorado. As a result management strategies were converted from a post-season population objective to a hunter and landowner satisfaction survey. Perceived population trends based on personnel, landowner and hunter observations indicate this population is declining. Lack of adequate habitat due to urban and industrial development is the most probable reason.

## Management Summary

This season traditionally starts the third Saturday in September and runs for about three weeks. To simplify regulations and standardize the opening date with the Hawk Springs Herd Unit the opening date is now September 20. In an attempt to address the decreasing herd along with difficulties in obtaining desired harvest the Type 6 licenses were decreased by 50. Landowners are still in favor of the late season hunt from November 15 - December 31. Based on past seasons we predict a harvest of 40 bucks, 25 does and 5 fawns for a total of 70 pronghorn.


2013 - JCR Evaluation Form

| SPECIES: Pronghorn |  |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: | :---: |
| HERD: PR521-HAWK SPRINGS |  |  |  |
| HUNT AREAS: 34-36 |  |  | PREPARED BY: MARTIN HICKS |
|  | 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: | 7,420 | 5,500 | 5,100 |
| Harvest: | 1,089 | 1,125 | 985 |
| Hunters: | 1,213 | 1,233 | 1,170 |
| Hunter Success: | 90\% | 91\% | 84\% |
| Active Licenses: | 1,396 | 1,462 | 1,330 |
| Active License Percent: | 78\% | 77\% | 74\% |
| Recreation Days: | 4,667 | 5,403 | 4,600 |
| Days Per Animal: | 4.3 | 4.8 | 4.7 |
| Males per 100 Females | 42 | 52 |  |
| Juveniles per 100 Females | 47 | 50 |  |
| Population Objective: |  |  | 6,000 |
| Management Strategy: |  |  | Recreational |
| Percent population is above (+) or below (-) objective: |  |  | -8.3\% |
| Number of years population has been + or - objective in recent trend: |  |  | 20 |
| Model Date: |  |  | 03/03/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |  |
|  |  | JCR Year | Proposed |
|  | Females $\geq 1$ year old: | 13\% | 11\% |
|  | Males $\geq 1$ year old: | 39\% | 40\% |
|  | Juveniles (< 1 year old): | 4\% | 4\% |
|  | Total: | 16\% | 15\% |
| Proposed ch | in post-season population: | -11\% | -8\% |

Population Size - Postseason


## Harvest



Number of Hunters


Harvest Success
$\square$ PR521 - Hunter Success \% PR521 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR521-Days


Preseason Animals per 100 Females

for Pronghorn Herd PR521-HAWK SPRINGS

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | $\begin{aligned} & \text { Tot } \\ & \text { Cls } \end{aligned}$ | $\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$ | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Pre Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | YIng | Adult | Total | Conf Int | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 9,800 | 158 | 177 | 335 | 30\% | 524 | 47\% | 265 | 24\% | 1,124 | 1,418 | 30 | 34 | 64 | $\pm 7$ | 51 | $\pm 6$ | 31 |
| 2009 | 9,000 | 144 | 166 | 310 | 20\% | 872 | 57\% | 359 | 23\% | 1,541 | 1,010 | 17 | 19 | 36 | $\pm 4$ | 41 | $\pm 4$ | 30 |
| 2010 | 8,800 | 69 | 161 | 230 | 18\% | 658 | 53\% | 360 | 29\% | 1,248 | 1,183 | 10 | 24 | 35 | $\pm 4$ | 55 | $\pm 5$ | 41 |
| 2011 | 8,000 | 104 | 160 | 264 | 21\% | 669 | 54\% | 309 | 25\% | 1,242 | 1,378 | 16 | 24 | 39 | $\pm 4$ | 46 | $\pm 5$ | 33 |
| 2012 | 7,400 | 94 | 132 | 226 | 23\% | 517 | 53\% | 240 | 24\% | 983 | 1,297 | 18 | 26 | 44 | $\pm 5$ | 46 | $\pm 6$ | 32 |
| 2013 | 6,800 | 88 | 201 | 289 | 26\% | 558 | 50\% | 279 | 25\% | 1,126 | 1,184 | 16 | 36 | 52 | $\pm 6$ | 50 | $\pm 6$ | 33 |


| Hunt <br> Area | Date of Seasons |  |  |  |  |
| :---: | :---: | :--- | :--- | :--- | :--- |
| Type | Opens | Closes | Quota | Limitations |  |
| 34 | 1 | Sept. 20 | Oct. 14 | 800 | Limited quota; any antelope |
|  | 6 | Sept. 20 | Dec. 31 | 500 | Limited quota; doe or fawn |

## ARCHERY

| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 34 | 1 | +550 |
| 34 | 6 | +225 |
| 34 | 7 | -150 (deleted) |
| 35 | 1 | -375 (deleted) |
| 35 | 6 | -300 (deleted) |
| 36 | 1 | -175 (deleted) |
| 36 | 6 | $-125($ deleted ) |
| Total | $\mathbf{1}$ | $\mathbf{0}$ |
|  | $\mathbf{6}$ | $\mathbf{- 2 0 0}$ |
|  | $\mathbf{7}$ | $\mathbf{- 1 5 0 ( \text { deleted) }}$ |

## Management Evaluation

Current Management Objective: 6,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~5,500
2014 Postseason Population Estimate: ~5,100

## Herd Unit Issues

The management objective for the Hawk Springs Herd Unit is a post-season population objective of 6,000 pronghorn, which is a decrease of 1,000 from the previous objective of 7,000 . In addition hunt areas $34-36$ were combined to simplify management and hunting regulations. The numeric herd objective was decreased and hunt areas combined based on internal recommendations and public involvement during the 2013 herd objective review process. The management strategy is recreational management with a pre-season buck ratio range of 20-59 Bucks:100 Does.

The 2013 post-season population estimate was about 5,500 pronghorn with the population slowly trending downward from a high of 9,300 in 2006. The last line-transect survey conducted in this herd unit was June 2007 that resulted in a population estimate of 21,000 pronghorn. This survey implied the herd increased by $62 \%$ from the previous line-transect conducted in 2003 with a population estimate of 8,100 . Given poor fawn production, poor habitat conditions and loss of habitat this estimate does not seem plausible. As a result this model is anchored to the 2003 linetransect estimate.

The southern end of the herd unit along Interstate Highway 80 to U.S. Highway 85 has experienced an increase in urban and industrial development resulting in a decrease in occupied habitat. The northern $2 / 3$ of the unit is comprised of dryland farming, irrigated farming, land enrolled into the Conservation Reserve Program and native rangeland. The majority of issues with landowners occur when there are high densities of pronghorn on irrigated and non-irrigated agricultural fields. This typically results in damage issues, which is the rationale behind the late season doe/fawn licenses.

The majority of this herd unit is comprised of private land (84\%). Access is available through the Department's PLPW program and limited access to 350 square miles of state land.

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Fawn survival increased compared to 2012, most likely to mild winter condition and above average summer/fall moisture. Ungulates went into the winter in good body condition as a result of the fall moisture. Winter conditions were somewhat mild with low snowpack but with periods of extreme cold temperatures, followed up with above freezing periods. Refer to the following websites for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

We do not have established habitat transects for this herd. Mule deer transects were established in 2000. However, they have been abandoned recently due to lack useful data. Transects were established within mule deer crucial winter range, looking at different plant species that are specific to mule deer diets, not pronghorn. Habitat indices did indicated that shrubs were underutilized with low production and lacked the nutrient requirements needed during winter months. Pronghorn in this herd unit are mostly dependent on irrigated and dryland crops.

## Field Data

This herd has been stable to declining due to poor fawn production for the past ten years (10-year average: 48 fawns: 100 does. However, the sample size ( $n=1,124$ ) in 2013 was $21 \%$ lower the $80 \%$ C.I. ( $\mathrm{n}=1,418$ ) and was also only met 2 out of the past 5 years (page 4 ) so ratios need to be interpreted with caution. Doe/fawn license issuance has fluctuated around 750 for the past 5 years. Buck ratios have been well within the recommended recreational management range, ( 52 Bucks:100 Does in 2012) but limited access prevents additional opportunity to put hunters in the field. The sample size for field check tooth data collected in the field was too small to provide accurate estimates for population parameters. The age data collected indicates a majority of male pronghorn are $\geq 3$ years old, which is likely a result of hunters looking for a mature buck.

Females ranged from 1+ to 3+ years of age. Of the hunters surveyed in 2013, 87\% were satisfied with their hunt, which is higher than the three-year average of $82 \%$. Based on comments in the field during the 2013 hunting season, hunters had more success accessing private land and they appreciated the number of acres enrolled into the PLPW program.

## Harvest Data

Hunter success of $91 \%$ in 2013 was similar to the ten-year and the state-wide average of $89 \%$. There was a drastic decline in success towards the southern end of the herd unit, which was $50 \%$ in Hunt Area 36. Urban sprawl, industrial gas development and loss of private land access are most likely the reasons for the lower success rate. Hunter effort was 4.8 days per harvest in 2013 which was slightly higher than the ten-year average of 4.5 days per harvest and the 2013 statewide effort of 4.0 days. Factors impacting success also contributed to increase in harvest effort.

## Population

The "Constant Juvenile - Constant Adult Survival" (CJ,CA) spreadsheet model was chosen for the post season population estimate of this herd. The model ranks fair with 20 years of data. The model is aligned with two of the three past line-transects, providing a standard error. This model also has the lowest AIC score, and the model aligns fairly well with observed data. The line-transect in 2007 was ignored and the independent estimates of 2001 and 2003 are similar to model estimates. The model predicted a decreasing trend since 2007; given poor fawn production and increased female harvest since 2002 this seems plausible. WGFD personnel observations indicate that pronghorn densities would support this trend. Some landowners still feel there are too many pronghorn but the amount of damage has decreased in the last 2-3 years. Trends in harvest statistics (stable success, increasing effort) seem to support model simulations of a slightly decreasing population.

## Management Summary

The season opening date was standardized to September $20^{\text {th }}$ along with the combination of Hunt Areas 34-36 into Hunt Area 34 during the herd objective review process in 2013. The combination of hunt areas and reduction in the numeric objective will do three things: 1) simplify management/harvest for both the department and landowners, 2) provide opportunity for hunters by opening up the entire herd unit to hunt, and 3) manage the population at a more reasonable level.
The 2014 season is designed to try and maintain the population within $10 \%$ of the new objective of 6,000 pronghorn. Given previous harvest rates and the 1,300 licenses available ( 800 Type 1 licenses, and 500 Type 6 licenses) we expect to harvest around 985 pronghorn, resulting in a post-season population estimate of 5,100 pronghorn.








PH521-Hawk Springs
HA 34-36
Revised - $12 / 88$


2013 - JCR Evaluation Form

| SPECIES: Pronghorn |  |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: | :---: |
| HERD: PR522-MEADOWDALE |  |  |  |
| HUNT AREAS: 11 |  |  | PREPARED BY: MARTIN HICKS |
|  | 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: | 5,260 | 4,600 | 4,400 |
| Harvest: | 647 | 495 | 495 |
| Hunters: | 687 | 667 | 670 |
| Hunter Success: | 94\% | 74\% | 74\% |
| Active Licenses: | 781 | 707 | 700 |
| Active License Percent: | 83\% | 70\% | 71\% |
| Recreation Days: | 2,166 | 2,172 | 2,100 |
| Days Per Animal: | 3.3 | 4.4 | 4.2 |
| Males per 100 Females | 35 | 50 |  |
| Juveniles per 100 Females | 56 | 63 |  |
| Population Objective: |  |  | 5,000 |
| Management Strategy: |  |  | Recreational |
| Percent population is above (+) or below (-) objective: |  |  | -8\% |
| Number of years population has been + or - objective in recent trend: |  |  | 8 |
| Model Date: |  |  | 03/03/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |  |
|  |  | JCR Year | Proposed |
|  | Females $\geq 1$ year old: | 7\% | 7\% |
|  | Males $\geq 1$ year old: | 30\% | 29\% |
|  | Juveniles (<1 year old): | 2\% | 2\% |
|  | Total: | 9\% | 10\% |
| Proposed ch | post-season population: | +6\% | -6\% |

Population Size - Postseason
$\square$ PR522-POPULATION - PR522-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ PR522 - Hunter Success \% PR522 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR522 - Days


Preseason Animals per 100 Females


2008-2013 Preseason Classification Summary
for Pronghorn Herd PR522-MEADOWDALE

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls Obj | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Pre Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | YIng | Adult | Total | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{gathered} 100 \\ \text { Fem } \end{gathered}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 6,700 | 72 | 111 | 183 | 18\% | 562 | 54\% | 293 | 28\% | 1,038 | 1,544 | 13 | 20 | 33 | $\pm 4$ | 52 | $\pm 6$ | 39 |
| 2009 | 6,700 | 71 | 194 | 265 | 19\% | 684 | 48\% | 483 | 34\% | 1,432 | 1,744 | 10 | 28 | 39 | $\pm 4$ | 71 | $\pm 6$ | 51 |
| 2010 | 6,000 | 80 | 137 | 217 | 20\% | 543 | 50\% | 319 | 30\% | 1,079 | 1,404 | 15 | 25 | 40 | $\pm 5$ | 59 | $\pm 6$ | 42 |
| 2011 | 5,500 | 32 | 140 | 172 | 15\% | 612 | 55\% | 334 | 30\% | 1,118 | 1,426 | 5 | 23 | 28 | $\pm 4$ | 55 | $\pm 5$ | 43 |
| 2012 | 4,900 | 62 | 133 | 195 | 20\% | 553 | 58\% | 211 | 22\% | 959 | 838 | 11 | 24 | 35 | $\pm 4$ | 38 | $\pm 5$ | 28 |
| 2013 | 5,100 | 60 | 139 | 199 | 23\% | 402 | 47\% | 252 | 30\% | 853 | 1,154 | 15 | 35 | 50 | $\pm 6$ | 63 | $\pm 8$ | 42 |

# 2014 HUNTING SEASONS <br> MEADOWDALE PRONGHORN HERD (PR522) 

| Hunt <br> Area | Type | Dates of Seasons <br> Opens |  | Closes | Quota |
| :---: | :---: | :--- | :--- | :--- | :--- | Limitations |  | 11 | Oct. 1 | Oct. 15 | 350 |
| :---: | :---: | :---: | :---: | :---: |
| Oct. 16 | Oct. 31 |  | Limited quota; any antelope <br> Unused Area 11 Type 1 licenses <br> valid for doe or fawn |  |
|  | 6 | Oct. 1 | Oct. 31 | 200 |
| Limited quota; doe or fawn |  |  |  |  |
| Archery |  | Aug. 15 | Sept. 30 |  |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 11 | 1 | 0 |
| 11 | 6 | 0 |
| Total | $\mathbf{1}$ | $\mathbf{0}$ |
|  | $\mathbf{6}$ | $\mathbf{0}$ |

## Management Evaluation

Current Management Objective: 5,000
Management Strategy: Recreational
2013 Post-season Population Estimate: ~4,600
2014 Post-season Population Estimate: ~4,400

## Herd Unit Issues

The management objective for the Meadowdale Pronghorn Herd Unit of 6,000 was decreased to 5,000 as a result of internal and public input during the 2013 herd objective review process. The management strategy is recreational management, which is a $30-59$ buck: 100 doe range.

The 2013 post-season population estimate was about 4,600 with the population trending down from the high of 7,000 pronghorn in 2004. The last line-transect was conducted in June of 2003 that resulted in an estimate of 5,800 pronghorn. The northern portion of the herd unit continues to have the highest densities of pronghorn which has resulted in more acres of private lands enrolled into the PLPW walk-in program, as well as landowners opening access, particularly during the doe/fawn season.

There has been little urban and industrial development within this herd unit. The herd unit is comprised of $90 \%$ private land and some accessible state land. Land use is comprised of native range land, irrigated and dry land agriculture fields, and land enrolled into the Conservation Reserve Program. The majority of access is in the northern portion of the herd unit via the PLPW program and private land opened up address damage situations.

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Pre-season fawn ratios were the highest observed in the past five years, most likely to mild winter condition and above average summer/fall moisture. Ungulates went into the winter in good body condition as a result
of the fall moisture. Winter conditions were somewhat mild with low snowpack and with periods of extreme cold temperatures, followed by above freezing periods. Refer to the following websites for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

We do not have established habitat transects for this herd. Mule deer transects within the Goshen Rim Herd were established in 2000. However, they have been abandoned recently due to lack of useful data. The transects were established to monitor vegetation used by mule deer. Data lacks any meaningful analysis since vegetation type is not utilized by pronghorn. Habitat data indicated that shrubs were underutilized with low production and lacked the nutrient requirements needed during winter months. Pronghorn in this herd unit are mostly dependent on irrigated and dryland crops.

## Field Data

Fawn production typically runs around 58 fawns: 100 does, except during severe drought years (2002 and 2012). Bucks per 100 does have fluctuated from a low of 28:100 to a high of 59:100 within the last ten years, still with recreational management range. However, in 2013 the sample size was $27 \%$ below the $90 \% \mathrm{CI}(\mathrm{n}=1,154)$ so classification needs to be interpreted with caution. Pre-season classification data is collected from the ground in August. The vegetation typically dries out by that time making it difficult to locate small bachelor herds of bucks and even larger herds of does and fawns. Low fawn recruitment and aggressive seasons that were designed to reduce the population have resulted in a decreasing population trend, placing the population slightly below the new objective of 5,000 pronghorn. With the population at a desired level there is not a proposal to increase Type 6 licenses, and given the classification sample the Type 1 licenses are proposed to remain at 350 . Sample size for tooth data collected in the field is too small to infer any population dynamics. In $201391 \%$ of the hunters were satisfied, which was the same as the three-year average. Based on conversations from hunters in the field they are pleased amount of access with Walk in Areas (WIA)'s and private land access. Landowners are still concerned about damage issues but would rather have a short season with plenty of doe/fawn licenses available than a long season.

## Harvest Data

The 2013 hunter success of $70 \%$ was significantly lower than the ten-year average of $95 \%$. Effort in 2013 was 4.4 days per harvest which is greater than the long-term average of 3.3 days per harvest. These two harvest statistics appear to support a decline in population. However, movement from Hunt Area 9 on the north end of the herd unit confounds population assumptions. At any given time there could be an increase or decrease of pronghorn depending on movement across Highway 18/20. It is difficult to interpret the sudden drop in success and increase in effort. The number of acres enrolled into the PLPW program remained the same and the above average precipitation in September and October Reduced damage complaints and likely dispersed pronghorn more, which could explain the decrease in hunter success and increase in effort.

## Population

The "Constant Juvenile - Constant Adult Survival" (CJCA) spreadsheet model was chosen to use for the post-season population estimate of this herd. This model did have the lowest AIC score (224), and the population estimate appears reasonable. This model is ranked fair based on model criteria outlined in the User Guide: Spreadsheet Model for Ungulate Population data.

There is adequate years of population and harvest data and the population is aligned with independent population estimates derived from line-transects conducted in 1996, 1998, 2000 and 2003 (there are standard errors available 2 out of the last ten years). Simulated data aligns fairly well with observed data lending more credibility to the model. The model has predicted a decreasing population trend since 2004. This seems plausible given average to below average fawn production and increased female harvest since 2005. WGFD personnel observations indicate that pronghorn densities would support this trend in the southern portion of the herd unit. However, the northern $1 / 3$ of the herd unit continues to have high densities of pronghorn. Landowners in that portion of the herd unit have damage problems and have voiced their concern at several department meetings over the past two years. Interchange from the Cheyenne River Pronghorn Herd Unit to the north prevents a closed population assumption, therefore providing lower confidence in the model.

## Management Summary

The 2013 season was the first to see Hunt Areas 11 and 12 combined. Based on input from landowners and sportsmen obtained in the 2013 herd objective review process there was support for this combination as well as a decrease in the numeric objective from 6,000 to 5,000 . A minority of landowners were concerned about draw odd for nonresident hunters with the combination. The only application process that was not a $100 \%$ draw was the nonresident random. Hunters that have at least one preference point or choose to apply for the random special were guaranteed a Type 1 license. The majority of landowners and sportsmen indicated the combination allowed for more opportunity and simplified the regulations. License numbers should maintain or slightly decrease the population. However, with the Hunt Area 9 Type 6 license $(\mathrm{n}=650)$ there is the potential to reduce the population below the objective. Given past harvest rates ( $60 \%$ ) with the Area 9 Type 6 license that will most likely not be the case

Given previous harvest rates we expect to attain a harvest of 495 pronghorn. The 2014 postseason population estimate is 4,400 pronghorn, $12 \%$ below the objective of 5,000 , but within the $\pm 20 \%$ recommended range for herd management.






2013 - JCR Evaluation Form

| SPECIES: Pronghorn |  | PERIOD: 6/1/2013-5/31/2014 |  |
| :--- | :--- | :---: | :---: |
| HERD: PR523 - IRON MOUNTAIN |  |  |  |
| HUNT AREAS: 38 |  | PREPARED BY: LEE KNOX |  |
|  |  |  |  |

## Population Size - Postseason

$\square$ PR523-POPULATION - PR523-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ PR523 - Hunter Success \% PR523 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR523 - Days


Preseason Animals per 100 Females
PR523 - Males

- PR523 - Juveniles




## 2014 HUNTING SEASONS

IRON MOUNTAIN PRONGHORN (PR523)

| Hunt <br> Area | Type | Dates of Seasons <br> Opens | Closes | Quota | Limitations |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 38 | 1 | Oct. 5 | Oct. 31 | 1100 | Limited quota licenses; any <br> antelope |
|  | 6 | Oct. 5 | Oct. 31 | 875 | Limited quota licenses; doe or <br> fawn |
| Archery | Nov. 1 | Dec. 31 |  | Refer to Section 3 of this Chapter |  |


| Area | Type | Quota change from <br> $\mathbf{2 0 1 4}$ |
| :---: | :---: | :---: |
| 38 | 7 | -50 |
| Herd <br> Totals | 7 | $\mathbf{- 5 0}$ |

## Management Evaluation

Current Postseason Population Management Objective: 13,000
Management Strategy: Recreational
2013 Postseason Population Estimate: 9,600
2014 Proposed Postseason Population Estimate: 9,600
The management objective for the Iron Mountain Pronghorn Herd Unit is a post-season population objective of 13,000 pronghorn. The management strategy is recreational management with a post hunt buck ratio of 20 to 59:100 does. The objective and management strategy was last revised in 2003 and is currently under review.

## Herd Unit Issues

The Iron Mountain Herd Unit consists of Hunt Areas 38, 39, 40 and 104 (combined into Hunt Area 38 for the 2014 season) which are predominately private lands with traditional agricultural uses. The 2013 post-season population estimate was 9,584 with the population trending slightly upward. Access limitations hinder our ability to manage this herd. Efforts to increase harvest in accessible areas have resulted in reduced success and decreased hunt quality.

## Weather

Weather during the spring and summer of 2013 remained extremely dry. The Palmer Drought Severity Index (PDSI) ranked drought conditions in SE Wyoming as extreme through the month of August and could be the reason fawn ratios declined from 69 fawns: 100 does in 2012 to 60 fawns: 100 does in 2013. However the fall of 2013 was extremely wet with September 2013 being the wettest September recorded in Laramie and pronghorn were in good body condition
going into winter. For specific weather information please refer to the following link: http://www.ncdc.noaa.gov/.

## Habitat

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. The reader is referred to the Strategic Habitat Plan Annual Report for further background information on shrub transects.

## Field Data

A total of 1,325 pronghorn were classified which is below the recommended classification objective of 1,987. Fawn ratios declined from 69 fawns: 100 does in 2012 to 60 fawns: 100 does in 2013. The five year average for this herd is 58 fawns: 100 does indicating fawn ratios are above the 5 year average for this herd. Buck ratios increased to 58 bucks: 100 does which is at the high end of recreational management but is more of a factor of limited hunter access than harvest management. The hunter satisfaction survey showed $78 \%$ of hunters were either satisfied or very satisfied with their hunt which is lower than some public land herds but is comparable to past years for this herd.

## Harvest Data

The few landowners who do allow hunter access reduced access in 2013 due to ongoing issues with road and property damages. To address this issue we cut 350 licenses from the 2013 season which is reflected in the hunter effort declining to 4 days and hunter success increasing from $72 \%$ in 2012 to $77 \%$ in 2013. This herd remains a low priority area for hunters due to the lack of access. Most licenses are purchased after the draw by non-residents who make up $60 \%$ of the license holders.

## Population

The population has remained fairly stable. The spreadsheet model for this herd estimates a post hunt population of 9,584. This estimate uses the Constant Juvenile \& Adult Survival model which had a AIC score of 27 and a best fit score of 17 . This is a poor model due to little data available; ratio data, if available, considered highly biased because of poor sample sizes or an inability to survey the entire area; results not biologically defensible. To get the model to run we truncated years to 2002 to eliminate years of poor classification data. We also did not include LT estimates as they are also of poor quality due to such large deviations in terrain height resulting in large standard errors. Field staff and landowners are happy with current numbers and believe the population is stable or slightly growing.

## Management Summary

This herd has always been hard to manage due to limited population data and a large percentage of inaccessible private lands. We combined Hunt Areas 38, 39, 40 and 104 for 2014 to simplify regulations and allow hunters more opportunity to move where the pronghorn are most accessible. We are leaving the license issuance as status quo for the first year of the combination of hunt areas so we can better understand the effects from this change and address them in 2015.



| Classification Counts |  |  |  |  |  |  | Harvest |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Juvenile/Female Ratio |  |  | Total Male/Female Ratio |  |  | Juv | Males | Females | Total Harvest | Segment Harvest Rate (\% of <br> Total Males <br> Females |  |
| Year | Derived Est | Field Est | Field SE | Derived Est | Field Est | Field SE |  |  |  |  |  |  |
| 2002 |  | 42.41 | 2.15 | 36.52 | 36.46 | 1.95 | 779 | 379 | 60 | 1218 | 37.6 | 6.7 |
| 2003 |  | 51.42 | 2.81 | 35.48 | 36.94 | 2.26 | 736 | 415 | 68 | 1219 | 37.3 | 7.5 |
| 2004 |  | 50.75 | 2.23 | 37.56 | 34.15 | 1.72 | 772 | 459 | 67 | 1298 | 36.7 | 8.2 |
| 2005 |  | 51.93 | 2.35 | 38.98 | 42.74 | 2.07 | 705 | 645 | 68 | 1418 | 32.3 | 11.5 |
| 2006 |  | 54.80 | 3.71 | 43.12 | 44.23 | 3.22 | 825 | 680 | 66 | 1571 | 35.3 | 12.5 |
| 2007 |  | 55.90 | 3.24 | 45.32 | 47.35 | 2.90 | 922 | 675 | 66 | 1663 | 38.7 | 12.8 |
| 2008 |  | 68.22 | 3.75 | 45.31 | 47.24 | 2.92 | 921 | 678 | 59 | 1658 | 39.8 | 13.3 |
| 2009 |  | 59.08 | 3.18 | 47.66 | 45.01 | 2.65 | 897 | 613 | 107 | 1617 | 36.2 | 11.8 |
| 2010 |  | 63.66 | 2.96 | 47.66 | 46.54 | 2.40 | 949 | 656 | 26 | 1631 | 38.7 | 12.8 |
| 2011 |  | 41.59 | 4.17 | 48.29 | 41.30 | 4.15 | 881 | 693 | 76 | 1650 | 35.2 | 13.4 |
| 2012 |  | 69.33 | 3.86 | 45.59 | 45.63 | 2.90 | 778 | 634 | 83 | 1495 | 36.3 | 13.5 |
| 2013 |  | 59.87 | 3.97 | 49.53 | 58.06 | 3.89 | 715 | 516 | 61 | 1292 | 30.2 | 10.8 |
| 2014 |  | 60.60 | 4.10 | 51.49 | 49.14 | 3.56 | 791 | 614 | 73 | 1479 | 31.9 | 12.8 |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |







2013 - JCR Evaluation Form

| SPECIES: Pronghorn |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: PR524-DWYER |  |  |
| HUNT AREAS: 103 |  | PREPARED BY: MARTIN HICKS |
| 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: 4,580 | 5,400 | 5,400 |
| Harvest: 502 | 533 | 525 |
| Hunters: 515 | 561 | 555 |
| Hunter Success: 97\% | 95\% | 95 \% |
| Active Licenses: 601 | 662 | 655 |
| Active License Percent: 84\% | 81\% | 80 \% |
| Recreation Days: 1,899 | 2,145 | 2,140 |
| Days Per Animal: 3.8 | 4.0 | 4.1 |
| Males per 100 Females 53 | 59 |  |
| Juveniles per 100 Females 48 | 47 |  |
| Population Objective: |  | 4,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | 35\% |
| Number of years population has been + or - objective in rece | nd: | 1 |
| Model Date: |  | 03/02/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 8\% | 8\% |
| Males $\geq 1$ year old: | 16\% | 17\% |
| Juveniles (<1 year old): | 0\% | 0\% |
| Total: | 9\% | 8\% |
| Proposed change in post-season population: | -3\% | 0\% |

## Population Size - Postseason

$\square$ PR524-POPULATION - PR524-OBJECTIVE


Harvest


Number of Hunters


Harvest Success
$\square$ PR524 - Hunter Success \% PR524 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR524-Days


Preseason Animals per 100 Females


## 2008-2013 Preseason Classification Summary

for Pronghorn Herd PR524-DWYER

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | $\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$ | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Pre Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | Conf Int | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | Conf Int | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 5,500 | 102 | 258 | 360 | 31\% | 560 | 47\% | 259 | 22\% | 1,179 | 984 | 18 | 46 | 64 | $\pm 6$ | 46 | $\pm 5$ | 28 |
| 2009 | 5,200 | 60 | 123 | 183 | 27\% | 345 | 51\% | 147 | 22\% | 675 | 1,036 | 17 | 36 | 53 | $\pm 7$ | 43 | $\pm 6$ | 28 |
| 2010 | 5,200 | 78 | 113 | 191 | 26\% | 356 | 49\% | 185 | 25\% | 732 | 807 | 22 | 32 | 54 | $\pm 7$ | 52 | $\pm 7$ | 34 |
| 2011 | 5,000 | 56 | 115 | 171 | 18\% | 512 | 54\% | 271 | 28\% | 954 | 1,345 | 11 | 22 | 33 | $\pm 4$ | 53 | $\pm 6$ | 40 |
| 2012 | 4,500 | 93 | 106 | 199 | 30\% | 326 | 49\% | 140 | 21\% | 665 | 1,224 | 29 | 33 | 61 | $\pm 8$ | 43 | $\pm 7$ | 27 |
| 2013 | 6,000 | 105 | 221 | 326 | 29\% | 552 | 49\% | 258 | 23\% | 1,136 | 1,146 | 19 | 40 | 59 | $\pm 6$ | 47 | $\pm 5$ | 29 |

# 2014 HUNTING SEASONS <br> DWYER PRONGHORN HERD (524) 

| Hunt Area | Dates of Seasons |  |  | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type | Opens | Closes |  |  |
| 103 | 1 | Oct. 5 | Oct. 31 | 375 | Limited quota; any antelope |
|  | 6 | Oct. 5 | Dec. 31 | 250 | Limited quota; doe or fawn |
|  | 7 | Oct. 5 | Dec. 31 | 175 | Limited quota; doe or fawn valid in that portion of Area 103 south of Cottonwood Creek. |

Archery $\quad$ Aug. $15 \quad$ Oct. $4 \quad$ Refer to Section 3 of this Chapter

| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 103 | 1 | 0 |
| 103 | 6 | +50 |
| 103 | 7 | -50 |

## Management Evaluation

Current Management Objective: 4,000
Management Strategy: Recreational
2013 Post-season Population Estimate: ~5,400
2014 Post-season Population Estimate: ~5,400

## Management Issues

The management objective for the Dwyer Pronghorn Herd Unit is a post-season population objective of 4,000 pronghorn. The management strategy is recreational management with a 2059 buck: 100 doe ratio range. The objective and management strategy were last revised in 2000 and were reviewed again in 2014. After several rounds of public meetings and internal recommendations the Laramie Region will propose to the Wyoming Game and Fish Commission in June, 2014 to maintain a numeric objective of 4,000 with a recreational management strategy.

This population had been trending downward from a high of 6,200 in 2003. The last linetransect survey was conducted in June 2003 and resulted in an estimated population of 5,800 pronghorn. There will be a LT conducted at the end of the 2013 biological year.

There has been very little in the way of land conversion to urban or industrial development. The herd unit is comprised of native rangeland and irrigated cropland (alfalfa is the main crop). The herd unit is $82 \%$ private land, $14 \%$ BLM and $4 \%$ state land. Access to private land drives harvest and without the department's Private Lands Public Wildlife (PLPW) program opportunity would be limited. Unfortunately there was a loss of acres that were enrolled into the Walk in Areas (WIA) program. However, landowner's that experience crop damage have opened up access and after the 2014 herd objective review process several landowners came forward and stated they would allow access for the 2014 season.

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Pre-season fawn ratios of $47: 100$ were higher than 2012 by $8 \%$ and were slightly higher than the ten-year average of 45:100. The increase is most likely a result of mild winter conditions and above average
summer/fall moisture. Ungulates went into the winter in good body condition as a result of the fall moisture. Winter conditions were somewhat mild with low snowpack but with periods of extreme cold temperatures, followed by periods of above freezing. Refer to the following websites for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

We do not have established habitat transects for this herd. Mule deer transects were established in 2000 for the Laramie Mountains Mule Deer Herd Unit, which overlays the Dwyer Herd Unit. Transect data from mixed mountain shrubs communities indicate the shrubs are decadent with little nutrient value. Mountain mahogany (Cercocarpus montanus), Antelope bitterbrush (Purshia tridentate) and Skunkbrush sumac (Rhus trilobata) are the three shrub species monitored. Transect data indicates the shrubs have little reproduction (except bitterbrush), are underutilized (except bitterbrush) and it appears that deer are keying in on other shrub species. No sagebrush species are monitored for pronghorn use.

## Field Data

Fawn production typically runs around 45 fawn: 100 does. However, the only time the classification sample size was met in the last ten years was 2008, (44 fawns:100 does). Sample size with a $90 \%$ C.I. was met the past five years. In 2013 the sample size of 1,136 was slightly lower than the $90 \%$ C.I. of 1,146 (page 4 of the 2013 JCR ). The majority of this herd unit is dependent on mild winters and average to above average spring precipitation. Pronghorn will migrate to higher elevations ( $\sim 7,000 \mathrm{ft}$ ) as green up occurs. However, if winter conditions force the herd to move onto winter range sooner in the fall or leave later in the spring, the herd will become dependent on agricultural crops (mainly irrigated alfalfa). This holds true for drought conditions as well. As with any herd, fawn production is based on animal health, available habitat and weather conditions. During the past ten years one of more of these factors has contributed to poor fawn production.

Bucks per 100 does have fluctuated from a low of 30:100 to a high of 64:100 in the last ten years, well within recreational management levels. Since the majority of the herd unit is comprised of private land adult male survival is typically higher than herd units with predominately public lands. Private land is usually not open to the general public hunting. This is most likely the explanation for buck ratios on the upper end of the recreational management range.

Hunter satisfaction for 2013 was $85 \%$, similar to the three-year average of $87 \%$. Based on hunter contacts during the 2013 hunting seasons there were plenty of positive comments about opportunity provided by the PLPW program. Hunters that did not ask for permission or find available state lands were disgruntled and no happy with their hunt, so the high satisfaction rate is somewhat surprising.

## Harvest Data

When analyzing overall harvest statistics for the past five years hunter success and effort have fluctuated only slightly. There has not been any major change to the landscape and for the most part access has remained the same. There has been a decrease in acres enrolled into the Walk-in Area (WIA) program, but at the same time some access has opened up on private land for doe harvest. However, the Type 7 licenses experienced a decrease in success and a sharp increase in effort. In the 2015 season setting process this license type will be considered for removal. It no longer seems necessary to force hunters south of Cottonwood Creek to address damage issues. By allowing the hunter the opportunity to hunt the entire area they will no longer be forced into
an area and have a unsuccessful hunt if the access is not there. It is expected that harvest trends will most likely remain stable unless there is a drastic change (more or less) in hunting access.

## Population

The "Constant Juvenile - Constant Adult Survival" (CJCA) spreadsheet model was chosen to use for the post season population estimate of this herd with a population estimate of 5,400 . This is a fair model for the following reasons: 1) there is adequate population data, 2) Simulations run through 3 out of the 4 independent density estimates and 3) the model aligns well with observed data. For further information the reader is referred to Morrison, 2012. The model's AIC score was significantly lower than the other two models. A decreasing population trend is consistent with poor fawn production, at times low buck ratios and personnel, landowner and hunter observations. A line-transect will be conducted for the 2013 biological year to provide an additional density estimate.

## Management Summary

Seasons have traditionally opened on October $5^{\text {th }}$ and run through the end of October, with the exception of late doe/fawn seasons. License numbers have fluctuated from 600 to 900 in the last ten years. At times irrigated alfalfa fields have any were from 200-300 pronghorn foraging on them in August-October, and then again later in the winter. The number of doe/fawn permits throughout the hunt area have increased to address damage and to decrease the population. The Type 7 license was decreased by 50 licenses. Hunter densities appear to have reached their saturation point and there have been fewer damage situations south of Cottonwood Creek. Unless there is a need, this license type will most likely be removed from the 2015 packet and evaluated during the season setting process. Type 1 licenses will remain the same as the 2013 season at 375 . Lack of access for bucks precludes an increase for Type 1 licenses.

If the projected harvest of 525 pronghorn is attained coupled with normal fawn recruitment and survival the pronghorn population will remain around $5,400,35 \%$ above the objective of 4,000 .

Literature cited:
Morrison, T. (2012) User Guide: Spreadsheet Model for Ungulate Population data, draft. Cooperative Fish and Wildlife Research Unit, 29







Comments:
END


2013 - JCR Evaluation Form

| SPECIES: Pronghorn <br> HERD: PR525 - MEDICINE BOW |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
|  |  |  |
| HUNT AREAS: 30-32, 41-42, 46-48 |  | PREPARED BY: LEE KNOX |
| 2008-2012 Average | 2013 | 2014 Proposed |
| Population: 32,102 | 24,941 | 31,479 |
| Harvest: 7,001 | 4,140 | 2,560 |
| Hunters: 7,626 | 5,028 | 2,800 |
| Hunter Success: 92\% | 82\% | 91\% |
| Active Licenses: 8,404 | 5,627 | 3,200 |
| Active License Percent: 83\% | 74\% | 80\% |
| Recreation Days: 24,067 | 16,282 | 9,000 |
| Days Per Animal: 3.4 | 3.9 | 3.5 |
| Males per 100 Females 49 | 34 |  |
| Juveniles per 100 Females 62 | 63 |  |
| Population Objective: |  | 60,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | -58.4\% |
| Number of years population has been + or - objective in rece | end: | 8 |
| Model Date: |  | 5/13/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 11.8\% | 2.8\% |
| Males $\geq 1$ year old: | 20.9\% | 29.1\% |
| Juveniles (<1 year old): | 2\% | 1\% |
| Total: | 10.51\% | 8\% |
| Proposed change in post-season population: | 4\% | 20\% |

## Population Size - Postseason

$\square$ PR525-POPULATION - PR525-OBJECTIVE


Harvest


Number of Hunters


Harvest Success
$\square$ PR525 - Hunter Success \% PR525 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR525 - Days


Preseason Animals per 100 Females


2008-2013 Preseason Classification Summary
for Pronghorn Herd PR525-MEDICINE BOW


## 2014 HUNTING SEASONS MEDICINE BOW PRONGHORN (PR525)

| Hunt <br> Area | Type | Dates of Opens | Season <br> Closes | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 1 | Oct. 5 | Oct. 31 | 400 | Limited quota licenses; any antelope |
|  | 6 | Oct. 5 | Oct. 31 | 50 | Limited quota licenses; doe or fawn |
| 31 | 1 | Sep. 25 | Oct. 31 | 150 | Limited quota licenses; any antelope |
|  | 6 | Sep. 25 | Oct. 31 | 50 | Limited quota licenses; doe or fawn |
| 32 | 1 | Sep. 25 | Oct. 31 | 300 | Limited quota licenses; any antelope |
|  | 6 | Sep. 25 | Oct. 31 | 200 | Limited quota licenses; doe or fawn |
| 41 | 1 | Sep. 25 | Oct. 31 | 50 | Limited quota licenses; any antelope |
|  | 6 | Sep. 25 | Oct. 31 | 50 | Limited quota licenses; doe or fawn |
| 42 | 1 | Sep. 25 | Oct. 31 | 400 | Limited quota licenses; any antelope |
|  | 6 | Sep. 25 | Oct. 31 | 50 | Limited quota licenses; doe or fawn |
| 46 | 1 | Sep. 25 | Oct. 31 | 100 | Limited quota licenses; any antelope |
|  | 2 | Oct. 5 | Oct. 31 | 150 | Limited quota licenses; any antelope |
|  | 6 | Sep. 25 | Oct. 31 | 75 | Limited quota licenses; doe or fawn |
|  | 7 | Oct. 5 | Oct. 31 | 75 | Limited quota licenses; doe or fawn |
| 47 | 1 | Sep. 25 | Oct. 31 | 400 | Limited quota licenses; any antelope |
|  | 2 | Oct. 5 | Oct. 31 | 150 | Limited quota licenses; any antelope |
|  | 6 | Sep. 25 | Oct. 31 | 75 | Limited quota licenses; doe or fawn |
|  | 7 | Oct. 5 | Oct. 31 | 75 | Limited quota licenses; doe or fawn |
| 48 | 1 | Sep. 25 | Oct. 31 | 150 | Limited quota licenses; any antelope |
|  | 2 | Oct. 5 | Oct. 31 | 150 | Limited quota licenses; any antelope |
|  | 6 | Sep. 25 | Oct. 31 | 50 | Limited quota licenses; doe or fawn |
|  | 7 | Oct. 5 | Oct. 31 | 50 | Limited quota licenses; doe or fawn |

## Archery

30,31,32,41, 42,46,47,48

Aug. 15
Refer to Section 3 of this Chapter

| Area | Type | Change from 2012 |
| :---: | :---: | :---: |
| 30 | 1 | -100 |
|  | 6 | -150 |
| 31 | 1 | -200 |
|  | 6 | -150 |
| 32 | 1 | -100 |
|  | 6 | -200 |
| 42 | 1 | -150 |
|  | 6 | -150 |
| 46 | 1 | -50 |
|  | 2 | -100 |
|  | 6 | -175 |
|  | 7 | -225 |
| 47 | 1 | -300 |
|  | 2 | -100 |
|  | 6 | -475 |
|  | 7 | -175 |
| 48 | 1 | -50 |
|  | 2 | -50 |
|  | 6 | -250 |
|  | 7 | -250 |
| Herd | $\mathbf{1 \& ~ 2}$ | $\mathbf{- 1 2 0 0}$ |
| Totals | $\mathbf{6} \& \mathbf{7}$ | $\mathbf{- 2 2 0 0}$ |
|  | TOTAL | $\mathbf{- 3 4 0 0}$ |

## Management Evaluation

Current Postseason Population Management Objective: 60,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~25,000
2014 Proposed Postseason Population Estimate: ~31,500
The management objective for the Medicine Bow Pronghorn Herd Unit is a postseason population objective of 60,000 . The management strategy is recreational management which requires maintaining for buck ratios of 20 to 59:100 does. The objective and management strategy were last revised in 2001 and is scheduled to be reviewed in 2014.

## Herd Unit Issues

The Medicine Bow Herd Unit encompasses hunt areas 30, 31, 32, 41, 42, 46, 47 and 48. These hunt areas vary between predominantly public land and exclusively private land. Large scale wind farms and coal mining within this herd and may be negatively impacting habitat and productivity. Field staff documented Epizootic Hemorrhagic Disease (EHD) throughout the herd unit and in certain hunt areas observed drastic reductions in populations. It was thought for many years that poor habitat conditions in the Medicine Bow Herd Unit warranted a reduction in population size below objective. Our harvest strategy has been to reduce the population to a level that will allow range conditions to improve; however, we do not have data to demonstrate it
is working or how long the population would have to be suppressed to see a positive effect on habitat. The current population is not acceptable to the public or landowners and we will manage this herd to increase the population to a objective. The 2013 post-season population estimate was about 25,000 with the population decreasing from a high of 49.700 in 2004.

## Weather

Weather during the spring and summer of 2013 remained extremely dry. The Palmer Drought Severity Index (PDSI) ranked drought conditions in SE Wyoming as extreme through the month of August although the southern portion of this herd started receiving moisture in July. The fall of 2013 was ranked as extremely wet with September 2013 being the wettest September recorded in Laramie. For specific weather information please refer to the following link:
http://www.ncdc.noaa.gov/.

## Habitat

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. The reader is referred to the Strategic Habitat Plan Annual Report for further background information on shrub transects.

## Field Data

A total of 5,321 pronghorn were classified in 2013, exceeding the estimated classification objective of 2,221 . Buck ratios declined for the third straight year to $34: 100$ does, approaching the low end of recreational management. Both mature and yearling buck numbers were notably down by $32 \%$. Classification methods were changed from aerial to ground in 2013 and may have influenced the buck ratio, but most likely drought and EHD were the dominant factors. With the dry spring fawn ratios were anticipated to be low but they remained at 63 fawns: 100 does. The hunter satisfaction survey shows $80 \%$ of hunters were either satisfied or very satisfied with their hunt with $9.8 \%$ remaining neutral, which is comparable to past years. This is surprising since a majority of hunters checked in the field commented that they had a difficult time finding pronghorn compared to past years. During field checks this hunting season 406 pronghorn were aged by analyzing the front incisors. Over $50 \%$ of the males and females harvested were over 3 years old, which in the past is typically over $70 \%$, indicating we are over harvesting.

## Harvest Data

Hunter success for all active licenses types declined for the third straight year to $74 \%$ from the long term average of $84 \%$, and hunter effort increased by a day in 2013. Hunters had a difficult time finding pronghorn. We received 27 days of moisture in September and 15 days of rain in October for a minimum of 5 inches of precipitation total. Hunters had a difficult time getting
around in the muddy conditions and many got stuck. The Natrona County Sheriff's office flew the northern part of the herd unit and sent help to stranded hunters. There was a distinct drop in hunter success in seasons that opened on Oct. 5th due to these conditions. EHD caused large declines in populations that were noticed during hunting season in hunt areas 30, 31, 47 48 and 46. We have issued a liberal number of licenses for the past 6 years to purposely reduce the population to address habitat concerns. Department staff and hunters observed noticeably fewer pronghorn on the landscape, which would explain the reduction in hunter success.

## Population

The spreadsheet model for this herd indicates the population is declining with a post hunt population of 24,941 . This estimate was derived using the time-Specific juvenile and Constant Adult Survival model which had a AIC score of 264 and a best fit score of 160 . The last usable Line transect was conducted in 2002 with an estimate of 39,551 with a standard error of 6,829 . Line Transects were also conducted in 2007 and 2012 but are not usable due to data collection issues, severe drought, and extremely large standard errors. The model is of good quality, predicted end of year population trends align well with past line transect estimates, and is comparable with what field personnel have noted from landowner and hunter comments. The model has 15-20 years of data; ratio data available for all years in model; juvenile and adult survival estimate with standard errors available at least 2 out of 10 years(Grogan et al) and at least one sample-based population estimate with standard error available.

## Management Summary

The 2014 post season population is predicated to be approximately 31,500 pronghorn. If the projected harvest of 2,500 is attained and the 5 year average fawn ratio of 61 fawns: 100 does is maintained, the population should increase by 10,000 or more pronghorn. The reduction in licenses in 2013 was not enough to keep the population from decreasing further. Epizootic Hemorrhagic Disease was documented throughout the herd unit and it is still unclear how severe of an effect it had on this herd. The harvest strategy has been to reduce the population to a level that will allow range conditions to improve however; we do not have enough data to suggest it is working, or how long the population would have to be suppressed to see a positive effect. While we have reduced the pronghorn herd, livestock grazing rates have remained the same and effects to habitat are undistinguishable. With hunters and landowners becoming very concerned with the pronghorn population, current disease outbreaks, and the population estimated at 35,000 below the objective, we will be reducing licenses significantly to address these concerns.

## Bibliography of Herd Specific Studies

Grogan, R. Lindzey, F. Pronghorn survival in Wyoming. Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, 82071, USA

















PH525 - Medicine Bow HA 30-32, 41, 42, 46-48
Revised-6/04


2013 - JCR Evaluation Form

| SPECIES: Pronghorn HERD: PR526-COOPER LAKE |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
|  |  |  |
| HUNT AREAS: 43 |  | PREPARED BY: LEE KNOX |
| 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: 4,675 | 4,026 | 3,922 |
| Harvest: 671 | 678 | 630 |
| Hunters: 726 | 767 | 700 |
| Hunter Success: 92\% | 88\% | 90 \% |
| Active Licenses: 787 | 793 | 850 |
| Active License Percent: 85\% | 85\% | 74 \% |
| Recreation Days: 2,239 | 2,634 | 2,600 |
| Days Per Animal: 3.3 | 3.9 | 4.1 |
| Males per 100 Females 42 | 31 |  |
| Juveniles per 100 Females 74 | 77 |  |
| Population Objective: |  | 3,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | 34\% |
| Number of years population has been + or - objective in rece | nd: | 20 |
| Model Date: |  | 5/12/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 9\% | 9\% |
| Males $\geq 1$ year old: | 15\% | 15\% |
| Juveniles (<1 year old): | 2\% | 2\% |
| Total: | 8\% | 8\% |
| Proposed change in post-season population: | 6\% | 6\% |

## Population Size - Postseason

$\square$ PR526-POPULATION - PR526-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ PR526 - Hunter Success \%


## Active Licenses



Days Per Animal Harvested
$\square$ PR526 - Days


Preseason Animals per 100 Females


| Hunt <br> Area | Type | Dates Season <br> Opens | Closes | Quota | Limitations |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| 43 | 1 | Sept. 15 | Oct. 14 | 400 | Limited quota licenses; any antelope <br> Limited quota licenses; doe or fawn |
|  | 6 | Sept. 15 | Oct. 14 | 450 |  |
| Archery <br> 43 |  | Aug. 15 | Sept. 14 | Refer to Section 3 of this Chapter |  |

## Management Evaluation

Current Postseason Population Management Objective: 3,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 4,000
2014 Proposed Postseason Population Estimate: ~3900
The management objective for the Cooper Lake Pronghorn Herd Unit is a post-season population objective of 3,000 pronghorn. The management strategy is recreational management with a buck ratio of 20 to 59:100 does. The objective and management strategy was last revised in 2013.

## Herd Unit Issues

The 2013 post-season population estimate was 4,026 with the population trending slowly downward from 5,000 in 2008. The last line transect was conducted in 2006 and estimated the end of year population at 5,400 with a standard error of 570 . This herd is predominately private land with increasing urban sprawl near Laramie, and a large wind farm in the western portion of the herd. Limited public access has hindered efforts to decrease this herd through harvest. Currently most public hunting is limited to the Diamond Lake and Laramie River Hunter Management Areas (HMA) which currently encompass half of the Herd Unit. Field staff have documented Epizootic Hemorrhagic Disease (EHD) in the herd unit, but it is unclear to what level this has affected the population.

## Weather

Weather during the spring and summer of 2013 remained extremely dry. The Palmer Drought Severity Index (PDSI) ranked drought conditions in SE Wyoming as extreme through the month of August although range conditions in the Cooper Lake Herd started improving in July. The fall of 2013 was ranked as extremely wet with September 2013 being the wettest September recorded in Laramie. For specific weather information please refer to the following link:
http://www.ncdc.noaa.gov/.

## Habitat

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. The reader is referred to the Strategic Habitat Plan Annual Report for further background information on shrub transects.

## Field Data

A total of 850 pronghorn were classified which far below the estimated 1,784 classification objective. Fawn ratios decreased slightly from 80:100 in 2012 to 77 fawns: 100 does in 2013, but is still higher than surrounding herds and near average for this herd unit. Drought and EHD caused buck ratios to decline from the 5 year average of 41 bucks: 100 does to 31 bucks, which is still within the target range for recreational management. Hunter success remained comparable to 2012 at $90 \%$ in the Type 1's and $85 \%$ in the Type 6's. Hunter effort increased for both license types from the record amount of rain in September making conditions difficult to get around. The hunter satisfaction survey showed $87 \%$ of hunters were either satisfied or very satisfied with their hunt which is a decline of $94 \%$ in 2012 but still indicates a quality hunt.

## Harvest Data

We issued 900 licenses which did not completely sell in the resident draw but were picked up after the draw by non-residents who account for over $85 \%$ of the licenses. The total number of type 1 licenses will be decreased by 50 to address the decline in buck ratio, especially the lack of yearling bucks. With the current high success rate we are near the license issuance threshold on the HMAs and an increase may actually decrease the amount of harvest.

## Population

The model estimates the population is near 4,000 pronghorn and predicts it will decline to 3700 in 2014. The Constant Juvenile- Constant Adult Mortality Rate (CJCA) spreadsheet model was chosen to use for the post season population estimate of this herd. The model chosen had the lowest AIC of all three models and the end of year population estimate trends well with the past LTs. This model is ranked poor due to small sample sizes and no survival data or sample based population estimate. This model seems plausible predicting a downward trend in the population which has also been noted by landowners and field personnel.

## Management Summary

With the current amount of public access and a predicted harvest of 640 pronghorn the model predicts that the population will continue trending downward towards the management objective. Modeling efforts predict a 2014 post-season population of about 3,900. We reduced the number
of Type 1s by 50 to address the low yearling and mature buck ratios. Harvest in this herd largely relies on two large HMAs in the hunt area which has been instrumental in moving this population towards objective. With the current number of licenses issued the herd should gradually reach the objective with a smaller chance of over harvesting.











ল゙








2013 - JCR Evaluation Form

| SPECIES: Pronghorn |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: PR527-CENTENNIAL |  |  |
| HUNT AREAS: 37, 44-45 |  | PREPARED BY: LEE KNOX |
| 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: 16,224 | 12,761 | 12,537 |
| Harvest: 1,382 | 1,126 | 820 |
| Hunters: 1,600 | 1,335 | 900 |
| Hunter Success: 86\% | 84\% | 91 \% |
| Active Licenses: 1,781 | 1,498 | 1,100 |
| Active License Percent: 78\% | 75\% | 75 \% |
| Recreation Days: 5,924 | 4,725 | 3,000 |
| Days Per Animal: 4.3 | 4.2 | 3.7 |
| Males per 100 Females 42 | 36 |  |
| Juveniles per 100 Females 73 | 61 |  |
| Population Objective: |  | 14,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | -8.8\% |
| Number of years population has been + or - objective in rece | nd: | 1 |
| Model Date: |  | 5/13/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 4.3\% | 3.5\% |
| Males $\geq 1$ year old: | 8.4\% | 8\% |
| Juveniles (<1 year old): | .8\% | 1\% |
| Total: | 6.76\% | 7\% |
| Proposed change in post-season population: | 13.6\% | 5\% |

Population Size - Postseason
$\square$ PR527-POPULATION - PR527-OBJECTIVE


## Active Licenses



Days Per Animal Harvested
$\square$ PR527-Days


Preseason Animals per 100 Females


## Active Licenses



Days Per Animal Harvested
$\square$ PR527-Days


Preseason Animals per 100 Females


## 2014 HUNTING SEASONS

CENTENNIAL PRONGHORN (PR527)

| Hunt <br> Area | Type | Dates of <br> Seasons <br> Opens | Closes | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 37 | 1 | Sep. 20 | Oct. 14 | 225 | Limited quota licenses; any <br> antelope <br> Limited quota licenses; doe <br> or fawn <br> Limited quota licenses; any <br> antelope <br> Limited quota licenses; doe <br> or fawn <br> Limited quota licenses; any <br> antelope <br> Limited quota licenses; doe <br> or fawn |
|  | 6 | Sep. 20 | Oct. 14 | 75 | Oct. 5 |
| 45 | 1 | Sep. 13 150 | Oct. 5 | 150 | Snused Area 45 Type 1 and |
| Type 6 licenses valid in that |  |  |  |  |  |
| portion of Area 45 south of |  |  |  |  |  |
| Wyoming Highway 130 |  |  |  |  |  |


| Hunt <br> Area | License <br> Type | Quota change from <br> $\mathbf{2 0 1 3}$ |
| :---: | :---: | :---: |
| 37 | 1 | -50 |
|  | 7 | -25 |
| 44 | 1 | -50 |
|  | 6 | -100 |
| 45 | 1 | -50 |
|  | 6 | -150 |
| Herd Unit | $\mathbf{1}$ | $\mathbf{- 1 5 0}$ |
| Total | $\mathbf{6}$ | $\mathbf{- 2 5 0}$ |
|  | $\mathbf{7}$ | $\mathbf{- 2 5}$ |

## Management Evaluation

Current Postseason Population Management Objective: 14,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 12,800
2014 Postseason Population Estimate: ~12,500

The Management objective for the Centennial Pronghorn Herd Unit is a post-season population of 14,000 . The management strategy is recreational management requiring a buck ratio of 20 to 59:100 does. The objective and management strategy was last revised in 2013.

## Herd Unit Issues

The Centennial Pronghorn Herd Unit encompasses Hunt Areas 37, 44, and 45 which are predominately private land with little public access. The 2013 post-season population estimate was approximately 12,800 with the population trending slowly downward from 24,000 in 2004. The last line transect was conducted in 2007 and predicted the end of bio year population of 17,500 . Harvest strategies are designed to maximize harvest where possible. Most of the harvest is limited to Hunter Management Areas where the threshold of hunter densities has been reached and an increase in license issuance would actually decrease harvest. This herd has experienced loss of habitat from an increase in subdivisions, and a wind farm is scheduled to be developed in Hunt Area 44 near the Colorado border, which may also cause a loss of access.

## Weather

Weather during the spring and summer of 2013 remained extremely dry. The Palmer Drought Severity Index (PDSI) ranked drought conditions in SE Wyoming as extreme through the month of August although range conditions in the Centennial Herd started improving in July. The fall of 2013 was extremely wet with September 2013 being the wettest September recorded in Laramie. For specific weather information please refer to the following link: http://www.ncdc.noaa.gov/.

## Habitat

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. The reader is referred to the Strategic Habitat Plan Annual Report for further background information on shrub transects.

## Field Data

A total of 1,922 pronghorn were classified, exceeding the estimated classification objective of 1,832. Fawn production declined for the second year from 66 fawns: 100 does in 2012 to 61 fawns: 100 does in 2013 which is most likely due to continued effects from the extreme drought conditions in the summer of 2012 that extended into the spring of 2013. Buck ratios increased from 33 bucks: 100 does in 2012 to 36 bucks: 100 does in 2013 which is in the middle of the recommended ratios for recreational management. Hunter success for the herd unit was $75 \%$ overall which has been on a slight decline since 2003. Success for reduced price licenses declined but success for full price licenses increased slightly. The Hunter Satisfaction Survey
showed $85 \%$ of hunters were satisfied or very satisfied with their hunt with $8 \%$ of respondents remaining neutral.

## Harvest Data

The biggest challenge is trying to manage harvest on the few accessible public lands and HMAs without decreasing the quality and abundance of game. A confounding influence is that some segments of the herd move back and forth between Colorado and Wyoming. In the past we have not been able to manage this herd through harvest due to high fawn ratios and limited access. We estimate the population has been reduced by half since 2004 and we are near objective. It is most likely a factor of low fawn ratios caused by drought conditions than harvest but we will be reducing licenses throughout the herd unit to address the decline.

## Population

The Constant Juvenile - Constant Adult Mortality Rate (CJCA) spreadsheet model was chosen to use for the post season population estimate of this herd. This model did not have the lowest relative AIC score but had the most reasonable population estimate. To get a model to run the years were truncated to 2000 and constrained the juvenile survival rate to 0.3 which is not biologically defensible. The model estimates the Centennial pronghorn herd has slowly trended downward since 2004 when the population was estimated at 24,000 and is currently near the population objective. The model is of poor quality due to significant interchange with populations in Colorado, lacks adult and juvenile survival data and there isn't a sample base population estimate. Harvest data indicates a decline, and field personnel, hunters, and landowners are seeing fewer pronghorn.

## Management Summary

If we attain the projected harvest of 820 pronghorn and have fawn ratios near 70 , the population will level out near the objective. We predict a 2014 post-season population of approximately 12,500 . With the reduction in licenses, harvest success should improve on the HMAs but also maintain the population near objective. We removed the type 7 in Hunt Area 37 which restricted hunter movement and is no longer necessary.. The season in Hunt Area 44 is 5 days longer to address landowners concerns to run the season into deer season and spread out the harvest on HMAs.






Comments:


2013 - JCR Evaluation Form

| SPECIES: Pronghorn |  |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: | :---: |
| HERD: PR528-ELK MOUNTAIN |  |  |  |
| HUNT AREAS: 50 |  |  | PREPARED BY: WILL SCHULTZ |
|  | 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: | 4,900 | 2,553 | 2,914 |
| Harvest: | 919 | 707 | 335 |
| Hunters: | 1,019 | 795 | 400 |
| Hunter Success: | 90\% | 89\% | 84\% |
| Active Licenses: | 1,088 | 829 | 450 |
| Active License Percent: | 84\% | 85\% | 74\% |
| Recreation Days: | 3,413 | 2,645 | 1,250 |
| Days Per Animal: | 3.7 | 3.7 | 3.7 |
| Males per 100 Females | 39 | 33 |  |
| Juveniles per 100 Females | 47 | 47 |  |
| Population Objective: |  |  | 5,000 |
| Management Strategy: |  |  | Recreational |
| Percent population is above (+) or below (-) objective: |  |  | -48.9\% |
| Number of years population has been + or - objective in recent trend: |  |  | 3 |
| Model Date: |  |  | 04/18/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |  |
|  |  | JCR Year | Proposed |
|  | Females $\geq 1$ year old: | 16.1\% | 3.6\% |
|  | Males $\geq 1$ year old: | 39.9\% | 33.8\% |
|  | Juveniles (<1 year old): | 1.5\% | 3.6\% |
|  | Total: | 14\% | .02\% |
| Proposed ch | post-season population: | -15.3\% | -8.1\% |

## Population Size - Postseason

$\square$ PR528-POPULATION - PR528-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ PR528 - Hunter Success \% PR528 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR528 - Days


Preseason Animals per 100 Females


2008-2013 Preseason Classification Summary
for Pronghorn Herd PR528-ELK MOUNTAIN

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls Obj | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Pre Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | Conf Int | $\begin{aligned} & 100 \\ & \text { Adult } \end{aligned}$ |
| 2008 | 7,600 | 84 | 234 | 318 | 22\% | 808 | 55\% | 331 | 23\% | 1,457 | 1,831 | 10 | 29 | 39 | $\pm 4$ | 41 | $\pm 4$ | 29 |
| 2009 | 7,000 | 111 | 272 | 383 | 23\% | 846 | 52\% | 412 | 25\% | 1,641 | 1,617 | 13 | 32 | 45 | $\pm 4$ | 49 | $\pm 4$ | 34 |
| 2010 | 6,000 | 91 | 305 | 396 | 23\% | 907 | 53\% | 396 | 23\% | 1,699 | 1,668 | 10 | 34 | 44 | $\pm 4$ | 44 | $\pm 4$ | 30 |
| 2011 | 4,800 | 82 | 140 | 222 | 17\% | 764 | 59\% | 303 | 24\% | 1,289 | 1,221 | 11 | 18 | 29 | $\pm 3$ | 40 | $\pm 4$ | 31 |
| 2012 | 4,200 | 73 | 115 | 188 | 17\% | 545 | 50\% | 367 | 33\% | 1,100 | 1,098 | 13 | 21 | 34 | $\pm 4$ | 67 | $\pm 6$ | 50 |
| 2013 | 3,331 | 75 | 95 | 170 | 18\% | 510 | 55\% | 239 | 26\% | 919 | 1,000 | 15 | 19 | 33 | $\pm 4$ | 47 | $\pm 5$ | 35 |


| ELK MOUNTAIN PRONGHORN (PR528) <br> Hunt Area 50 2014 Hunting Seasons |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hunt Area | Type | Dates o Opens | Seasons Closes | Limited Quota | Limitations |
| 50 | 1 | Sep. 16 | Oct. 31 | 300 | Limited quota licenses; any antelope |
|  | 6 | Sep. 16 | Oct. 31 | 100 | Limited quota licenses; doe or fawn |
|  | 0 | Sep. 1 | Sep. 15 | 50 | Limited quota licenses; any antelope, muzzle-loading firearms only |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 50 | 1 | -100 |
| 50 | 6 | -400 |
| Herd Unit | $\mathbf{1}$ | $\mathbf{- 1 0 0}$ |
| Total | $\mathbf{6}$ | $\mathbf{- 4 0 0}$ |

## Management Evaluation

Current Management Objective: 5,000
Management Strategy: Recreational
2013 Postseason Population Estimate: 2,600
2014 Proposed Postseason Population Estimate: 2,900
Pronghorn in the Elk Mountain herd unit are managed toward a numeric objective of 5,000 . The population was estimated using a spreadsheet model developed in 2012 and updated in 2014. The herd is managed for recreational opportunity. The objective was last reviewed in 1997 and is planned for review in 2014.

## Herd Unit Issues

The Elk Mountain herd unit is comprised predominantly of either private or land-locked public land. Hunter access to these lands is limited, particularly east of Elk Mountain, where most pronghorn in this herd unit are found during the hunting season. Private lands open to hunters receive a large amount of pressure. Much of the herd unit's sagebrush ecosystem remains intact. However, increased agricultural, energy, and residential development does threaten the sagebrush habitat in this area.

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on pronghorn. For specific
meteorological information for the Elk Mountain herd unit the reviewer is referred to the following link:
http://www.ncdc.noaa.gov/cag/

## Habitat

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No pronghorn habitat production/utilization data was available for this herd unit. However, annual production rates should have improved from the previous year, while utilization rates on winter ranges likely continued to be high.

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality and consequently heavily influence population management for any particular big game specie.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: true mountain mahogany, antelope bitterbrush, skunkbrush sumac, big sagebrush, and four-wing saltbush. A majority of these transects were established approximately 12-13 years ago. Transects were established for several different reasons, including: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, and to compare present results with historic data sets.

## Field Data

Preseason ratios for this herd were 33 bucks and 47 fawns/100does in 2013. Buck ratios and fawn ratios both decreased in recent classification trend. Sample size from the classification survey ( $n=919$ ) was less than the adequate size $(\mathrm{n}=1,000)$ required for an estimate $90 \%$ confidence interval. Traditionally, classification data in this herd unit had been collected from fixed-wing aircraft. However, beginning in 2011, classification surveys were conducted from the ground and may contain more sampling biases in comparison with surveys conducted prior to 2011.

## Harvest Data

The 2013 harvest survey indicated a total of 700 pronghorn were harvested which was a decrease of $18 \%$ from 2012. Overall harvest success increased $5 \%$ to $85 \%$ for 830 active licensed hunters in 2013. The days/pronghorn decreased slightly from 3.9 to 3.7 days/harvest. The increase in harvest success and decrease in day/harvest were attributed to decreases in license numbers which were made in 2013 as a means to balance hunter opportunity with a decreased population size.

## Population

Spreadsheet model estimates indicated the Elk Mountain herd is currently below the management objective of 5,000 pronghorn. The CJ, CA model was selected again for the Elk Mountain herd unit in 2013. The model's population estimates are plausible and match trends in harvest and preseason classifications. However, the model does not intersect the 2007 and 2010 Line-Transect density estimation surveys. A portion of the Elk Mountain herd unit was used a control area for the University of Wyoming's Dunlap Wind Farm research project. We incorporated adult survival rates from this research into the model for 2010 and 2011.

We rated this model as fair, and biologically defensible in our evaluation. This rating was based on criteria identified in the user's guide for the WGFD spreadsheet model (Morrison 2012).

## Line-Transect Survey

A line-transect survey was conducted in June of 2013 to develop a bio-year 2012 end of year density/population estimate for this herd unit. The results (Appendix A) of this survey were plausible and were incorporated into the spreadsheet model.

## Management Summary

License numbers are reduced again for the 2014 season. Liberal seasons in combination with severe winters and summer drought have reduced pronghorn numbers in this herd unit over the past 5 years. The decreased license numbers should result in increasing harvest success rates and lowering the days/pronghorn rates. The popular muzzleloader only season will continue to be offered in 2014. License numbers could have been reduced further with respect to the current management objective but will be re-evaluated in 2015, after a public objective review process has been completed.

## Literature Cited

Morrison, T. 2012. User Guide: Spreadsheet Model for Ungulate Population data Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie. USA. 41 pp .

## Bibliography of Herd Specific Studies

None.

## 2012 PR528 - ELK MOUNTAIN Pronghorn Line-Transect Summary



```
Encounter rate for all data combined
Detection probability for all data combined
Expected cluster size for all data combined
Density for all data combined
Distances:
Analysis based on distance intervals
Width specified as: 202.0000
Left most value set at: 0.0000000
Clusters:
Analysis based on exact sizes
Expected value of cluster size computed by: regression of log(s(i)) on g(x(i))
Estimators:
----------
Estimator 1
Key: Uniform
Adjustments - Function : Cosines
    - Term selection mode : Sequential
    - Term selection criterion : Akaike Information Criterion (AIC)
    - Distances scaled by : W (right truncation distance)
Estimator selection: Choose estimator with minimum AIC
Estimation functions: constrained to be nearly monotone non-increasing
\begin{tabular}{|c|c|c|c|}
\hline Multipliers: & Value & SE & DF \\
\hline Sampling fraction & 2.0000 & & 0.00000 \\
\hline \multicolumn{4}{|l|}{Variances:} \\
\hline \multicolumn{4}{|l|}{Variance of n: Empirical estimate from stratified sample with overlapping strata (Estimator 02)} \\
\hline Variance of f(0): & & & \\
\hline
\end{tabular}
Goodness of fit:
Based on grouped distance data intervals
Glossary of terms
Data items:
n - number of observed objects (single or clusters of animals)
L - total length of transect line(s)
k - number of samples
K - point transect effort, typically K=k
T - length of time searched in cue counting
ER - encounter rate (n/L or n/K or n/T)
W - width of line transect or radius of point transect
x(i) - distance to i-th observation
s(i) - cluster size of i-th observation
r-p - probability for regression test
chi-p- probability for chi-square goodness-of-fit test
Parameters or functions of parameters:
m - number of parameters in the model
A(I) - i-th parameter in the estimated probability density function(pdf)
f(0) - 1/u = value of pdf at zero for line transects
u - W*p = ESW, effective detection area for line transects
h(0) - 2*PI/v
v - PI*W*W*p, is the effective detection area for point transects
p - probability of observing an object in defined area
ESW - for line transects, effective strip width = W*p
EDR - for point transects, effective detection radius = W*sqrt(p)
rho - for cue counts, the cue rate
DS - estimate of density of clusters
E(S) - estimate of expected value of cluster size
D - estimate of density of animals
N - estimate of number of animals in specified area
```



Model 3
Uniform key, $k(y)=1 / W$
Cosine adjustments of order(s) : 1, 2
Results:
Convergence was achieved with 25 function evaluations.
Final Ln(likelihood) value $=-138.89599$
Akaike information criterion = 281.79199
Bayesian information criterion $=286.72382$
AICc = 281.93484
Final parameter values: 0.53572273 0.14124855
** Warning: Parameters are being constrained to obtain monotonicity. **
Likelihood ratio test between models 2 and 3
Likelihood ratio test value = 1.2280 Probability of a greater value $=0.267792$
*** Model 2 selected over model 3 based on minimum AIC Detection Fct/Global/Parameter Estimates

| Effort | $:$ |  |
| :--- | :--- | :---: |
| \# samples | $\vdots$ |  |
| Width | $\vdots$ |  |
| Widt | 202.0000 |  |
| Left | $:$ |  |
| \# observations: | 87 |  |

## Model

Uniform key, $k(y)=1 / W$
Cosine adjustments of order(s) : 1

| Parameter | Point | Standard Error | Percent Coef. of Variation | 95 Percent |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate |  |  | Confidence | Interval |
| A( 1) | 0.4865 | 0.1435 |  |  |  |
| $f(0)$ | 0.73590E-02 | 0.71021E-03 | 9.65 | 0.60770E-02 | 0.89114E-02 |
| p | 0.67271 | 0.64923E-01 | 9.65 | 0.55552 | 0.81463 |
| ESW | 135.89 | 13.114 | 9.65 | 112.22 | 164.55 |



| $\begin{gathered} \text { Cell } \\ i \end{gathered}$ |  | Cut Points | Observed Values | Expected Values | Chi-square Values |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000 | 20.2 | 10 | 12.86 | 0.637 |
| 2 | 20.2 | 45.5 | 20 | 15.49 | 1.312 |
| 3 | 45.5 | 80.8 | 22 | 19.26 | 0.390 |
| 4 | 80.8 | 146. | 19 | 25.57 | 1.690 |
| 5 | 146. | 202. | 16 | 13.81 | 0.346 |

Total Chi-square value $=4.3759$ Degrees of Freedom $=3.00$
Probability of a greater chi-square value, $P=0.22363$
The program has limited capability for pooling. The user should
judge the necessity for pooling and if necessary, do pooling by hand.

| Effort | $:$ | 663.3000 |
| :--- | :---: | :--- |
| \# samples | $:$ | 34 |
| Width | $:$ | 202.0000 |
| Left | $:$ | 0.0000000 |
| \# observations: | 87 |  |

Expected cluster size estimated based on regression of: log(s(i)) on $g(x(i))$ ** Warning: Exact distance values, rather than distance intervals, have been used in size bias regression calculations. **

Regression Estimates

| Slope | $=0.879673$ | Std error $=0.326448$ |
| :--- | :--- | :--- |
| Intercept $=$ | $0.986228 \mathrm{E}-02$ | Std error $=0.256856$ |
| Correlation $=$ | 0.2805 | Students -t |
| Df | $=85$ | $\operatorname{Pr}(\mathrm{~T}<\mathrm{t})=0.69468$ |
| Df | $=0.995755$ |  |


| Expected cluster size $=$ | 3.1079 | Standard error $=0.25986$ |
| :--- | :--- | :--- |
| Mean cluster size | $=2.5747$ | Standard error $=0.22455$ |

** Warning: Size bias adjustment has increased expected cluster size. **
Cluster size/Global/Regression plot


$\begin{array}{lllllll}0.000 & 0.157 & 0.314 & 0.471 & 0.628 & 0.785 & 0.942\end{array}$
$\begin{array}{lllllll}0.078 & 0.235 & 0.392 & 0.549 & 0.706 & 0.863 & 1.020\end{array}$

Density Estimates/Global

| Effort | 663 | 663.3000 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# samples | 34 | 34 |  |  |  |
| Width | 202 | 202.0000 |  |  |  |
| Left | : | 0.0000000 |  |  |  |
| \# observatio | ns: 87 | 87 |  |  |  |
| Model 2 |  |  |  |  |  |
| Uniform key, $k(y)=1 / W$ |  |  |  |  |  |
| Cosine adjustments of order(s) : 1 |  |  |  |  |  |
|  | Point | Standard | Percent Coef. | 95 | ent |
| Parameter | Estimate | Error | of Variation | Confi | Interval |
| DS | 2.4999 | 0.54739 | 21.90 | 1.6186 | 3.8612 |
| E(S) | 3.1079 | 0.25986 | 8.36 | 2.6326 | 3.6689 |
| D | 7.7694 | 1.8210 | 23.44 | 4.8953 | 12.331 |
| N | 4553.0 | 1067.2 | 23.44 | 2869.0 | 7226.0 |

Measurement Units
Density: Numbers/Sq. miles
ESW: meters
Component Percentages of $\operatorname{Var}(\mathrm{D})$
Detection probability : 17.0
Encounter rate : 70.3

Cluster size : 12.7
Estimation Summary - Encounter rates


|  |  | Estimate | \%CV | df | 95\% Confid | ce Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Uniform/Cosine |  |  |  |  |  |  |
|  | m | 1.0000 |  |  |  |  |
|  | LnL | -139.51 |  |  |  |  |
|  | AIC | 281.02 |  |  |  |  |
|  | AICc | 281.07 |  |  |  |  |
|  | BIC | 283.49 |  |  |  |  |
|  | Chi-p | 0.22363 |  |  |  |  |
|  | f(0) | 0.73590E-02 | 9.65 | 86.00 | 0.60770E-02 | 0.89114E-02 |
|  | p | 0.67271 | 9.65 | 86.00 | 0.55552 | 0.81463 |
|  | ESW | 135.89 | 9.65 | 86.00 | 112.22 | 164.55 |

Estimation Summary - Expected cluster size

|  | Estimate | \%CV | df | 95\% Confidence Interval |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average cluster size |  |  |  |  |  |
|  | 2.5747 | 8.72 | 86.00 | 2.1656 | 3.0611 |
| Uniform/Cosine |  |  |  |  |  |
| $r$ | 0.28054 |  |  |  |  |
| $r-p$ | 0.99576 |  |  |  |  |
| $E(S)$ | 3.1079 | 8.36 | 85.00 | 2.6326 | 3.6689 |
| Estimation Summary - Density\&Abundance |  |  |  |  |  |
|  | Estimate | \%CV | df | 95\% Confidence Interval |  |
| Uniform/Cosine |  |  |  |  |  |
| DS | 2.4999 | 21.90 | 49.72 | 1.6186 | 3.8612 |
| D | 7.7694 | 23.44 | 64.48 | 4.8953 | 12.331 |
| N | 4553.0 | 23.44 | 64.48 | 2869.0 | 7226.0 |

INPUT

| Species: | PRONGHORN |
| :--- | :--- |
| Biologist: | WILL SCHULTZ |
| Herd Unit \& No.: | ELK MTN. PR528 |
| Model date: | $04 / 18 / 14$ |

,

op Model

\section*{| Fit |
| :---: |
| 103 |
| 106 |
| 49 |}

Constant Juvenile \& Adult Survival
Semi-Constant Juvenile \& Semi-Constant Adult Survival
Time-Specific Juvenile \& Constant Adult Survival
핑

| Year | $\begin{array}{l}\text { Predicted Prehunt Population (year i) } \\ \\ \text { Juveniles }\end{array}$ | Total Males |
| :--- | :--- | :--- |$\quad$ Females


| Juveniles | Total Mal |
| :---: | :---: |
| 1729 | 1623 |

CJ,CA
SCJ,SCA
TSJ,CA






ฐig ig






Comments:

$$
\begin{array}{l}\text { The CJ,CA model was used to due the relative simplicity and low } \mathrm{AIC}_{\mathrm{c}} \text { score. Model postseason estimate is plausible. }\end{array}
$$



Revised - 8/87

2013 - JCR Evaluation Form


## Population Size - Postseason

$\square$ PR529-POPULATION - PR529- OBJECTIVE


## Harvest



Number of Hunters


Harvest Success

PR529 - Hunter Success \% PR529 - Active License Success


## Active Licenses



Days Per Animal Harvested
$\square$ PR529-Days


Preseason Animals per 100 Females


## 2008-2013 Preseason Classification Summary

for Pronghorn Herd PR529-BIG CREEK

| Year | Pre Pop | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls <br> Obj | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | YIng | Adult | Total | Conf Int | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | Conf Int | $\begin{aligned} & 100 \\ & \text { Adult } \end{aligned}$ |
| 2008 | 1,000 | 9 | 25 | 34 | 24\% | 75 | 52\% | 34 | 24\% | 143 | 500 | 12 | 33 | 45 | $\pm 14$ | 45 | $\pm 14$ | 31 |
| 2009 | 800 | 42 | 84 | 126 | 27\% | 272 | 59\% | 64 | 14\% | 462 | 476 | 15 | 31 | 46 | $\pm 5$ | 24 | $\pm 3$ | 16 |
| 2010 | 700 | 13 | 49 | 62 | 17\% | 214 | 60\% | 82 | 23\% | 358 | 361 | 6 | 23 | 29 | $\pm 5$ | 38 | $\pm 6$ | 30 |
| 2011 | 650 | 15 | 33 | 48 | 17\% | 170 | 62\% | 57 | 21\% | 275 | 446 | 9 | 19 | 28 | $\pm 6$ | 34 | $\pm 6$ | 26 |
| 2012 | 750 | 32 | 60 | 92 | 34\% | 110 | 41\% | 68 | 25\% | 270 | 441 | 29 | 55 | 84 | $\pm 16$ | 62 | $\pm 13$ | 34 |
| 2013 | 800 | 8 | 43 | 51 | 18\% | 141 | 51\% | 84 | 30\% | 276 | 503 | 6 | 30 | 36 | $\pm 8$ | 60 | $\pm 11$ | 44 |

## BIG CREEK PRONGHORN (PR529)

## Hunt Area 51

2014 Hunting Season

|  |  | Dates of Seasons |  | Limited |  |
| :--- | :--- | :---: | :---: | :---: | :--- |
| Hunt Area | Type | Opens | Closes | Quota | Limitations |
| 51 | 1 | Sep. 16 | Nov. 14 | 50 | Limited quota licenses; any <br> antelope |
|  | 6 | Sep. 16 | Nov. 14 | 50 | Limited quota licenses; doe or <br> fawn |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| Herd Unit | $\mathbf{1}$ | $\mathbf{+ 2 5}$ |
| Total | $\mathbf{6}$ | $\mathbf{+ 2 5}$ |

## Management Evaluation

Current Management Objective: 600
Management Strategy: Recreational
2013 Postseason Population Estimate: 760
2014 Proposed Postseason Population Estimate: 640
Pronghorn in the Big Creek herd unit are managed toward a numeric objective of 600 . The population was estimated using a spreadsheet model developed in 2012 and update in 2013. The herd is managed for recreational opportunity. The management objective was last reviewed in 1997 and is planned for review in 2014.

## Herd Unit Issues

Pronghorn damage to alfalfa crops has decreased due to the low number of pronghorn observed in this herd unit. Access is difficult except for on those private lands receiving damage. Recent changes in land use have been observed in this herd unit. Several sections of abandoned wheat fields have been converted into cattle pastures which have been grazed intensively. Development in the Trail Run subdivision is also continuing. In the past these areas provided pronghorn with seasonal habitat and the observed changes in land use appear to be displacing pronghorn into other areas.

In 2011, the Carbon County Predator Management District, in cooperation with WGFD, initiated a coyote removal project for the benefit of the Big Creek herd unit. This project focused removal efforts on the very southeast portion of the herd unit. Preliminary data appeared to indicate fawn ratios have increased in this localized area. The coyote removal project continued through the fall of 2013. The final report from Wildlife Services' was appended to the document (Appendix A).

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on pronghorn. For specific meteorological information for the Big Creek herd unit the reviewer is referred to the following link:
http://www.ncdc.noaa.gov/cag/

## Habitat

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No pronghorn habitat production/utilization data was available for this herd unit. However, annual production rates should have improved from the previous year, while utilization rates on winter ranges likely continued to be high.

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality and consequently heavily influence population management for any particular big game specie.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: true mountain mahogany, antelope bitterbrush, skunkbrush sumac, big sagebrush, and four-wing saltbush. A majority of these transects were established approximately $12-13$ years ago. Transects were established for several different reasons, including: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, and to compare present results with historic data sets.

## Field Data

The 2013 preseason ratios were 36 bucks and 60 fawns per 100 does produced from an inadequate sample of 276 pronghorn obtained through ground surveys. 2012 fawn ratios decreased from 62 fawns $/ 100$ does, to 60 fawns $/ 100$ does. Sample size from the classification survey ( $n=276$ ) was less than the adequate size $(\mathrm{n}=503)$ required for an estimate with a $90 \%$ confidence interval. This herd unit is adjacent to the North Park, Colorado, and movement of pronghorn between Colorado and Wyoming complicates management activities, including the monitoring of pronghorn herd composition.

## Harvest Data

The harvest survey data for the 2013 hunting season indicated a total of 41 pronghorn were harvested with $85 \%$ harvest success for 48 active licensed hunters.

## Population

In 2013 the CJ,CA spreadsheet model was selected again for the Big Creek herd unit because it produced the best AICc score. The population estimate is plausible. Accuracy of the end of year density/population estimates developed from line-transect density surveys were suspect and likely an over estimation. Small sample sizes and interstate movements of pronghorn for this herd unit may bias line-transect survey estimates.

We rated this model as poor, and not biologically defensible in our evaluation. This rating was based on criteria identified in the user's guide for the WGFD spreadsheet model (Morrison 2012). The poor rating was primarily due to inadequate sample sizes for preseason classification surveys and the likely violation of an assumption that this is a closed population.

## Line-Transect Survey

A line-transect survey was conducted in June of 2013 to develop a bio-year 2012 end of year density/population estimate for this herd unit. The results (Appendix B) of this survey were considered to be overestimated due to observation bias. However, the results of this survey were incorporated into the spreadsheet model.

## Management Summary

We increased harvest opportunity for 2014 in the Big Creek herd unit, increasing the 25 Type 1 and Type 6 licenses from 25 to 50 for each type. Interstate movement of pronghorn complicates monitoring and subsequent management activities in this herd unit. Ocular estimates and discussions with landowners provide better information about this herd unit's population dynamics and status.

## Literature Cited

Morrison, T. 2012. User Guide: Spreadsheet Model for Ungulate Population data Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie. USA. 41 pp .

## Bibliography of Herd Specific Studies

None.

## Big Creek Pronghorn Antelope Recruitment Project

## Carbon County Predatory Management Board (CCPMD), USDA/APHIS/Wildlife Services (WS'), Wyoming Game and Fish Department (WG\&FD) 05/26/2011-9/05/2013



The Big Creek Pronghorn Antelope Recruitment Project consisted of a 3 year cooperative effort aimed at the removal of coyotes (Canis latrans) within Wyoming Antelope Hunt Area 51 to increase the viability of the Pronghorn Antelope (Antilocapra Americana) herd that fawn in this area. At the request of the WG\&FD, efforts were conducted by WS'/CCPMD personnel stationed in Carbon County and the WS' District Supervisor and pilot stationed in Casper WY. Specifically, removal took place on lands owned/leased by Big Creek Ranches and the Munroe Ranch. The total land area of these two ranches is approximately $65,528 \mathrm{ac}$. Average elevation of the area in which coyotes were taken was $8,065 \mathrm{ft}$. Coyotes were taken at $7,680 \mathrm{ft}$. and the highest was $8,450 \mathrm{ft}$. indicated by GPS. This area is a cow/calf production ranching area adjacent to the Medicine Bow National Forest. Private lands lay in the main valley which is interspersed with many irrigation ditches for hay production and several small creeks and reservoirs. Hwy 230 generally travels through the valley in a North/South direction. Due to the proximity of the Colorado State Line and the land in which these ranch holdings encompass, removal activities took place over parts of Hunt Area 51. The goal of this project was to validate that coyote removal will prove beneficial to Pronghorn Antelope fawn recruitment. The effort to remove coyotes from these two ranches began on 05/26/2011 with aerial hunting flight and continued until 09/05/2013. Ground work and aerial hunting continued as weather, recreational hunting use of lands, and time demanded by other pertinent WS' Carbon County duties permitted.

A total of 175 coyotes and 2 dens were removed from the project area. Of the 175 coyotes taken, 150 (due to overlaying waypoints) were plotted as GPS points on the attached topographic maps and 107 were retrieved for comprehensive data collection. 21 coyotes from the 107 retrieved were sampled for Plague/Tularemia and 3 for Parvovirus/Hydatid testing.

Below is a series of Coyote findings and totals related to the completed project:

| 5/26/11-11/16/1 | 1/31/12-9/6/12 | 4/24/13-9/5 |  |
| :---: | :---: | :---: | :---: |
| 14.4 hrs. | 23.8 hrs. | 15.5 hrs. | Aerial hunting time only. |
| 185.6 hrs. | 163.0 hrs. | 77.3 hrs. | Ground work time only. |
| 21 | - | - | Plague samples taken. 14 neg., 7 pos. |
| 21 | - | - | Tularemia samples taken. 21 neg. |
| - | - | 3 | Parvovirus/Hydatid samples taken. (N/R). |
| 5 | 5 | 5 | USDA/APHIS/WS Personnel. |
| 55 | 68 | 52 | Coyotes total removed from project area. |
| 1 | 1 | 0 | Coyote den removed from project area. |

107 of 175 total (61\%) coyotes taken verified for sampling and analysis.

| $5 / 26 / 11-11 / 16 / 11$ | $\underline{1 / 31 / 12-9 / 6 / 12}$ | $\frac{4 / 12 / 13-9 / 5 / 13}{}$ |  |
| :--- | :--- | :--- | :--- |
|  | 18 | 7 | Adult male coyotes verified. |
| 0 | 1 | - | Juvenile male verified. |
| 15 | 20 | 8 | Adult female coyotes verified. |
| 2 | 5 | 4 | Male pups verified. |
| 2 | 3 | 2 | Female pups verified. |
| 2 | 1 | - | pup not verified. |

## 5/26/11-11/18/11

5 Adult female coyotes showed the presence of placental scars on their uterus verifying they had recently whelped. 2 females had 8 pups each, 2 females had 4 pups each and 1 female had 6 pups. Avg. 6.0 pups per female of 5 verified.

2 Adult male coyotes were of advanced age due to tooth wear and 1 adult female coyote was infested with wormlike stomach parasites of unknown determination.

## 1/31/12-9/6/12

3 Adult female coyotes had a total of 21 unborn whelps at time of take $(7,7,5) .4$ females showed the presence of placental scars on their uterus totaling 19 whelps at time of take $(4,4,5,6)$. Avg. 5.7 pups per female of 7 verified.

## 4/24/13-9/5/13

2 Adult female coyotes showed presence of placental scars on their uterus totaling 8 whelps at time of take $(5,3)$. Avg. 4 pups per female of 2 verified.

2 Adult male coyotes showed advanced signs of Sarcoptic Mange parasitic skin disease.

## Stomach content occurrences on 38 verified coyotes 5/26/11-11/16/11.

| 3 | Empty | 1 | Sage grouse | 4 | Pronghorn |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Deer | 16 | Rodent | 4 | Rabbit |
| 7 | Grass/Vegetation | 12 | Cow/Calf | 1 | weasel |

## Stomach content occurrences on 48 verified coyotes 1/31/12-9/6/12.

| 16 | Empty | 1 | Bird | 16 | Rodent |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | Unknown | 2 | Deer | 4 | Pronghorn |
| 7 | Cow/Calf | 1 | Eaten by vultures | 3 | Grass |
| 3 | Rabbit | 1 | Plastic ear tag (calf) |  |  |

## Stomach content occurrences on 21 verified coyotes 4/24/13-9/5/13.

| 2 | Empty | 1 | Bird | 7 | Rodent |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Duck | 2 | Rabbit | 3 | Grass/Vegetation |
| 6 | Cow/Calf | 4 | Pronghorn |  |  |

After review of the attached collected data and the WGFD 2004-2013 Preseason Classification Summary presented by the WG\&F Dept. I believe that it is an adequate assumption that coyote removal does benefit Pronghorn Antelope fawn recruitment.

During a period of time (3/1/13-7/1/13) additional coyote removal activities took place adjacent to the North and West of Big Creek and Munroe Ranches. This is due to a similar project called the Platte Valley Mule Deer project (PVMDP) being conducted for the first year of a three year term. The removal of these additional coyotes may have affected the number of coyotes available to remove on the BC Project. Also, it may have attributed to an inadvertent increased effort that would support increased fawn recruitment in Pronghorn Antelope.

Livestock protection and PVMD coyote removal efforts will continue in the future on the areas encompassed by the BC Pronghorn Antelope Project. Please contact me if there any questions related to this report.

Special thanks to:

CCPMD Board Members

Will Shultz (G\&F Biologist, Saratoga)

Carbon County WS' CCPMD Specialists' (Troy Aleshire, Dan Braig, Tracy Villwok, Luke Spanbauer)

Jerry Hyatt (WS' Pilot)

Mike Pipas (WS' Disease Biologist)

Sincerely,

Craig Acres

USDA/APHIS/WS

Staff Biologist

12/10/2013

## 2004-2013 Preseason Classification Summary

for Pronghorn Herd PR529 - BIG CREEK
$\left.\left.\begin{array}{ccccc}\text { YEAR } & \text { YR. MALE/100 DOES } & \text { AD.MALE/100 DOES }\end{array} \begin{array}{c}\text { TOTAL MALE/100 } \\ \text { DOES }\end{array}\right) \begin{array}{c}\text { BIG CREEK } \\ \text { FAWNS/100 DOES }\end{array}\right]$


## 2012 PR529 - BIG CREEK Pronghorn Line-Transect Summary

| Survey Dates: 6/7/2013-6/7/2013 |  |  |  |
| :---: | :---: | :---: | :---: |
| Survey Cost: $\quad \$ 1,290.00$ |  |  |  |
| Flight Service: OWYHEE AIR, LLC. | OWYHEE AIR, LLC. |  |  |
| Aircraft: | MAULE |  |  |
| Observers: | Burton SE=186.98 |  |  |
| Weather Conditions: |  |  |  |
| Temperature | es Fahrenheit): | 60 F |  |
| Cloud Cover |  | < 30\% |  |
| Wind Speed (MPH): |  | 0-15 |  |
| Transect Limits: |  | 106.23 to 106 |  |
| Transect Direction: |  | North/South |  |
| Transect Interval (Minutes of Longitude): |  | 1.0 |  |
| Transect Length: (Mi.): |  | 335 |  |
| Transect Altitude (AGL): |  | 301 ft . |  |
| Occupied Habitat ( $\mathrm{mi}^{\mathbf{2}}$ ): |  | 208 |  |
| Density Estimate (Animals/mi ${ }^{2}$ with Confidence Intervals): |  |  | 6.6 (5.0-8.7) |
| Population Esti | (with Confidence Int | vals): | 1,364 (1,032-1,801) |

Encounter rate for all data comb
Encounter rate for all data combined
Detection probability for all data combined
Expected cluster size for all data combined
Density for all data combined
Distances:
Analysis based on distance intervals
Width specified as: 200.0000
Left most value set at: 0.0000000
Clusters:
Analysis based on exact sizes
Expected value of cluster size computed by: regression of $\log (\mathrm{s}(\mathrm{i}))$ on $\mathrm{g}(\mathrm{x}(\mathrm{i}))$
Estimators:
Estimator 1
Key: Uniform
Adjustments - Function : Simple polynomials

- Term selection mode : Sequential
- Term selection criterion : Akaike Information Criterion (AIC)
- Distances scaled by : W (right truncation distance)

Estimator selection: Choose estimator with minimum AIC
Estimation functions: constrained to be nearly monotone non-increasing


Goodness of fit:
Based on grouped distance data intervals

Glossary of terms

## Data items:

n - number of observed objects (single or clusters of animals)
$\mathrm{L} \quad$ - total length of transect line(s)
k - number of samples
K - point transect effort, typically K=k
T - length of time searched in cue counting
ER - encounter rate ( $n / L$ or $n / K$ or $n / T$ )
$W$ - width of line transect or radius of point transect
x(i) - distance to i-th observation
s(i) - cluster size of i-th observation
r-p - probability for regression test
chi-p- probability for chi-square goodness-of-fit test

Parameters or functions of parameters:
$m$ - number of parameters in the model
A(I) - i-th parameter in the estimated probability density function(pdf)
$\mathrm{f}(0)-1 / u=$ value of pdf at zero for line transects
u $-W^{*} p=E S W$, effective detection area for line transects
$h(0)-2 * P I / v$
v - PI*W*W*p, is the effective detection area for point transects
p - probability of observing an object in defined area
ESW - for line transects, effective strip width = W*
EDR - for point transects, effective detection radius $=W^{*} \operatorname{sqrt}(p)$
rho - for cue counts, the cue rate
DS - estimate of density of clusters
$E(S)$ - estimate of expected value of cluster size
D - estimate of density of animals
$\mathrm{N} \quad$ - estimate of number of animals in specified area

```
Effort : 335.8000
# samples : 23
Width : 200.0000
Left
# observations:
0.0000000
110
** Warning: The number of adjustment parameters allowed has
    been reduced to 4 because of limited number of intervals. **
Model 1
        Uniform key, k(y) = 1/W
            Results:
            Convergence was achieved with 1 function evaluations.
            Final Ln(likelihood) value = -173.51473
            Akaike information criterion = 347.02945
            Bayesian information criterion = 347.02945
            AICc = 347.02945
            Final parameter values:
Model 2
    Uniform key, k(y) = 1/W
    Simple polynomial adjustments of order(s) : 2
            Results:
            Convergence was achieved with 2 function evaluations.
            Final Ln(likelihood) value = -173.51473
            Akaike information criterion = 349.02945
            Bayesian information criterion = 351.72995
            AICc = 349.06650
            Final parameter values: 0.00000000
            ** Warning: Parameters are being constrained to obtain monotonicity. **
        Likelihood ratio test between models 1 and 2
            Likelihood ratio test value = 0.0000
            Probability of a greater value = 1.000000
*** Model 1 selected over model 2 based on minimum AIC
                Detection Fct/Global/Parameter Estimates
```

Effort : 335.8000
\# samples : 23
Width : 200.0000
Left : 0.0000000
\# observations: 110

Model
Uniform key, $k(y)=1 / W$

| Parameter | Point <br> Estimate | Standard Error | Percent Coef. of Variation | 95 Percent |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter |  |  |  |  |  |
| f(0) | 0.50000E-02 | 0.00000 | 0.00 | 0.50000E-02 | 0.50000E-02 |
| p | 1.0000 | 0.00000 | 0.00 | 1.0000 | 1.0000 |
| ESW | 200.00 | 0.00000 | 0.00 | 200.00 | 200.00 |



| Effort | $:$ | 335.8000 |
| :--- | :---: | :---: |
| \# samples | $:$ | 23 |
| Width | $\vdots$ | 200.0000 |
| Left | $\vdots$ | 0.0000000 |
| \# observations: | 110 |  |

Expected cluster size estimated based on regression of: log(s(i)) on $g(x(i))$
** Warning: Exact distance values, rather than distance intervals, have been used in size bias regression calculations. **

All X/G(X) measurements have nearly identical values. No size bias adjustment. Average cluster size used instead.

| Expected cluster size $=1.5455$ | Standard error | $=0.85316 \mathrm{E}-01$ |
| :---: | :--- | :--- |
| Mean cluster size $=1.5455$ | Standard error | $=0.85316 \mathrm{E}-01$ |


| Effort | $:$ | 335.8000 |
| :--- | :---: | :---: |
| \# samples | $\vdots$ | 23 |
| Width | $\vdots$ | 200.0000 |
| Left | 0.0000000 |  |
| \# observations: | 110 |  |

Model 1 Uniform key, k(y) = 1/W

|  | Point | Standard | Percent Coef. | $95 \%$ Percent <br> Parameter |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Estimate | Error | of Variation | Confidence Interval |  |  |

Measurement Units

```
Density: Numbers/Sq. miles
        ESW: meters
Component Percentages of Var(D)
Encounter rate : 83.8
Cluster size : 16.2
Estimation Summary - Encounter rates
```

|  | Estimate | \%CV | 95\% Confidence Interval |  |
| :---: | :---: | :---: | :---: | :---: |
| n | 110.00 |  |  |  |
| k | 23.000 |  |  |  |
| L | 335.80 |  |  |  |
| n/L | 0.32758 | 12.55 | 22.00 0.25278 | 0.42450 |
| Left | 0.0000 |  |  |  |
| Width | 200.00 |  |  |  |
| Summ | y - Detec | proba |  |  |


|  | Estimate | \%CV | df | 95\% Confidence Interval |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Uniform/Polynomial |  |  |  |  |  |
| m | 0.0000 |  |  |  |  |
| LnL | -173.51 |  |  |  |  |
| AIC | 347.03 |  |  |  |  |
| AICc | 347.03 |  |  |  |  |
| BIC | 347.03 |  |  |  |  |
| Chi-p | 0.11253E-01 |  |  |  |  |
| f(0) | 0.50000E-02 | 0.00 | 110.00 | 0.50000E-02 | 0.50000E-02 |
| p | 1.0000 | 0.00 | 110.00 | 1.0000 | 1.0000 |
| ESW | 200.00 | 0.00 | 110.00 | 200.00 | 200.00 |


|  | Estimate | \%CV | df | 95\% Confidence Interval |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average cluster size |  |  |  |  |  |
|  | 1.5455 | 5.52 | 109.00 | 1.3854 | 1.7240 |
| Uniform/Polynomial 1.54551 .7240 |  |  |  |  |  |
| $r$ | 0.0000 |  |  |  |  |
| r-p | 0.50000 |  |  |  |  |
| E(S) | 1.5455 | 5.52 | 109.00 | 1.3854 | 1.7240 |
| Estimation Summary - Density\&Abundance |  |  |  |  |  |
|  | Estimate | \%CV | df | 95\% Con | dence Interval |
| Uniform/Polynomial |  |  |  |  |  |
| DS | 4.2421 | 12.55 | 22.00 | 3.2735 | 5.4973 |
| D | 6.5560 | 13.71 | 31.11 | 4.9636 | 8.6591 |
| N | 1364.0 | 13.71 | 31.11 | 1032.0 | 1801.0 |

INPUT | Species: | PRONGHORN |
| :--- | :--- |
| Biologist: | WILL SCHULTZ |
| Herd Unit \& No.: | BIG CR. PR529 |
| Model date: | O4I18/14 | del







PH529-Big Creek
HA 51
Revised - 7/87


## 2013 - JCR Evaluation Form

| SPECIES: Bighorn Sheep |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: BS516-DOUGLAS CREEK |  |  |
| HUNT AREAS: 18 |  | PREPARED BY: LEE KNOX |
| 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: 0 | N/A | 75 |
| Harvest: 1 | 0 | 1 |
| Hunters: 1 | 0 | 100 |
| Hunter Success: 100\% | 0\% | 1\% |
| Active Licenses: 1 | 0 | 1 |
| Active License Percent: 100\% | 0\% | 100\% |
| Recreation Days: 2 | 0 | 10 |
| Days Per Animal: 2 | 0 | 10 |
| Males per 100 Females 29 | 68 |  |
| Juveniles per 100 Females 32 | 74 |  |
| Population Objective: |  | 350 |
| Management Strategy: |  | Special |
| Percent population is above (+) or below (-) objective: |  | N/A\% |
| Number of years population has been + or - objective in rece | nd: | 20 |
| Model Date: |  | None |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 0\% | 0\% |
| Males $\geq 1$ year old: | 0\% | 0\% |
| Juveniles (<1 year old): | 0\% | 0\% |
| Total: | 0\% | 0\% |
| Proposed change in post-season population: | 0\% | 0\% |

## Population Size - Postseason

$\square$ BS516-POPULATION - BS516-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ BS516 - Hunter Success \% BS516 - Active License Success


## Active Licenses

$\square$ BS516 - Active Licenses


## Days per Animal Harvested

$\square$ BS516 - Days


Postseason Animals per 100 Females
$\square$ BS516 - Males $\square$ BS516 - Juveniles


2008-2013 Postseason Classification Summary
for Bighorn Sheep Herd BS516 - DOUGLAS CREEK

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  |  |  | Males to 100 Females |  |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | $\begin{aligned} & \text { Post } \\ & \text { Pop } \end{aligned}$ | Ylg Adult Total \% |  |  |  | Total | \% | Tota | \% ${ }^{\text {C }}$ |  | Tot Cls <br> Cls Ob | Y Ing Adult Total |  |  |  | Conf 100 Conf 100 <br> al Int Fem Int Adult |  |  |  |
| 2008 | 0 | 0 | 1 | 5 | 6 | 23\% | 17 | 65\% | 3 | 12\% | 26 | 0 | 6 | 29 | 35 | $\pm 0$ | 18 | $\pm 0$ | 13 |
| 2009 | 0 | 0 | 0 | 4 | 4 | 15\% | 14 | 54\% | 8 | 31\% | 26 | 92 | 0 | 29 | 29 | $\pm 0$ | 57 | $\pm 0$ | 44 |
| 2010 | 0 | 0 | 1 | 3 | 4 | 16\% | 17 | 68\% | 4 | 16\% | 25 | 74 | 6 | 18 | 24 | $\pm 0$ | 24 | $\pm 0$ | 19 |
| 2011 | 0 | 0 | 0 | 4 | 4 | 12\% | 22 | 65\% | 8 | 24\% | 34 | 0 | 0 | 18 | 18 | $\pm 0$ | 36 | $\pm 0$ | 31 |
| 2012 | 0 | 0 | 1 | 3 | 4 | 31\% | 7 | 54\% | 2 | 15\% | 13 | 0 | 14 | 43 | 57 | $\pm 0$ | 29 | $\pm 0$ | 18 |
| 2013 | 0 | 0 | 6 | 7 | 13 | 28\% | 19 | 41\% | 14 | 30\% | 46 | 0 | 32 | 37 | 68 | $\pm 0$ | 74 | $\pm 0$ | 44 |

## 2014 HUNTING SEASONS

## DOUGLAS CREEK BIGHORN SHEEP (BS516)

| $\begin{aligned} & \text { Hunt } \\ & \text { Area } \\ & \hline \end{aligned}$ | Type | Dates of Opens | Season Closes | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18,21 | 1 | Sept. 1 | Oct. 31 | 2 | Limited quota licenses; any ram; (two resident licenses issued). |
| 18,21 Archery |  |  |  | Refer to Section 3 of this Chapter |  |
|  | Area |  | Type | Chang | e from 2012 |
|  | 18 |  | 1 |  | +2 |
|  | Herd <br> Totals |  | 1 |  | +2 |

## Management Evaluation

Current Postseason Population Management Objective: 350
2013 Postseason Population Estimate: ~ 75
2014 Proposed Postseason Population Estimate: ~ 75
The management objective for the Douglas creek Bighorn Sheep Herd Unit is a post-season population objective of 350 bighorn sheep. The management strategy is special management which maintains for a mean age of harvested rams between 6 and 8 years old. The objective and management strategy were last revised in 1986 and will be reviewed in 2016.

## Herd unit Issues

The Douglas Creek Herd Unit is located primarily in the Savage Run and Platte River Wilderness areas in the Snowy Range Mountains on the Medicine Bow National Forest. The herd is under special management guidelines which require the mean age of harvested rams to be between 6 -and 8 years old. This direction was taken to provide trophy opportunity to the public and allow this herd to grow. Pine Beetles have dramatically changed the landscape in the Medicine Bow National Forest where a large percentage of mature pines have died and starting to fall over. The impacts from the beetle kill are unclear but could improve sheep habitat as the forest becomes more open. Area 18 was closed from 2004 through 2007 and then again in 2009, 2011, and 2013 because this population has remained well-below desired levels due to low lamb recruitment. Hunt Area 18 and Area 21 of the Encampment River Herd were opened to provide some limited opportunity for two residents to hunt bighorn sheep.

## Weather

Weather during the spring and summer of 2013 remained extremely dry. The Palmer Drought Severity Index (PDSI) ranked drought conditions in SE Wyoming as extreme through the month of August. However the fall of 2013 was extremely wet with September 2013 being the wettest September recorded in Laramie. For specific weather information please refer to the following link: http://www.ncdc.noaa.gov/.

## Habitat

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. The reader is referred to the Strategic Habitat Plan Annual Report for further background information on shrub transects.

## Field Data

We have very little data on this population. The general public provides a few reports during the summer and hunting seasons. Our field personnel make some effort to document the status of segments of the herd during other big game surveys and an annual winter ground survey. Our observation data consistently documents low post-weaning lamb survival. Poor habitat conditions, the lack of well-defined seasonal migrations, and perhaps lingering effects of Pasteurellosis or some other disease may be stagnating this population.

## Harvest Data

Hunters typically harvest seven year old rams when the season is open so there is adequate opportunity for the limited number of licenses.

## Population

There isn't a model for a variety of reasons including: little data available, considered highly biased because of poor sample sizes or an inability to survey the entire area;; model does not run; results not biologically defensible. During 2013 fall classifications personnel accounted for 46 different sheep. These included $13 \mathrm{rams}, 19$ ewes and 14 lambs. The season was closed in 2013.

## Management Strategy

In 2014 Hunt Area 18 and Area 21 of the Encampment River Herd will be opened to provide some limited opportunity for two residents to hunt bighorn sheep.


2013 - JCR Evaluation Form


## Population Size - Postseason



## Harvest



Number of Hunters
$\square$ BS517-TOT $\square$ BS517-RES $\square$ BS517-NONRES


Harvest Success
$\square$ BS517 - Hunter Success \% BS517 - Active License Success


## Active Licenses


$\square$ BS517 - Days


Postseason Animals per 100 Females


2008-2013 Postseason Classification Summary
for Bighorn Sheep Herd BS517-LARAMIE PEAK

| Year | Post Pop | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls Obj | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | YIng | Adult | Total | Conf Int | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | Conf Int | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 0 | 3 | 26 | 29 | 26\% | 65 | 58\% | 19 | 17\% | 113 | 0 | 5 | 40 | 45 | $\pm 0$ | 29 | $\pm 0$ | 20 |
| 2009 | 0 | 3 | 33 | 36 | 28\% | 67 | 52\% | 26 | 20\% | 129 | 0 | 4 | 49 | 54 | $\pm 0$ | 39 | $\pm 0$ | 25 |
| 2010 | 0 | 3 | 23 | 26 | 32\% | 39 | 49\% | 15 | 19\% | 80 | 0 | 8 | 59 | 67 | $\pm 0$ | 38 | $\pm 0$ | 23 |
| 2011 | 0 | 4 | 20 | 24 | 27\% | 49 | 55\% | 16 | 18\% | 89 | 0 | 8 | 41 | 49 | $\pm 0$ | 33 | $\pm 0$ | 22 |
| 2012 | 0 | 0 | 7 | 7 | 20\% | 15 | 43\% | 13 | 37\% | 35 | 0 | 0 | 47 | 47 | $\pm 0$ | 87 | $\pm 0$ | 59 |
| 2013 | 0 | 7 | 16 | 23 | 20\% | 68 | 58\% | 26 | 22\% | 117 | 0 | 10 | 24 | 34 | $\pm 0$ | 38 | $\pm 0$ | 29 |

## 2014 HUNTING SEASONS LARAMIE PEAK BIGHORN SHEEP HERD (BHS517)

| $\begin{aligned} & \text { Hunt } \\ & \text { Area } \end{aligned}$ | Dates of Seasons |  |  | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type | Opens | Closes |  |  |
| 19 | 1 | Sep. 1 | Oct. 31 | 8 | Limited quota licenses; any ram |
| Archery |  | Aug. 15 | Aug. 31 |  | Refer to Section 3 of this Chapter |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 19 | 1 | 0 |

## Management Evaluation

Current Postseason Population Management Objective: 500
Management Strategy: Recreational
2013 Post-season Population Estimate: ~250
2014 Post-season Population Estimate: ~250

## Herd Unit Issues

The management objective for the Laramie Peak Bighorn Sheep herd is a post-season population objective of 500 wild sheep. The management strategy is recreational management. The objective and strategy were last revised in 1978. The population objective was reviewed during the winter/spring of 2014. Based on department staff, landowner, and public comments the following population management alternative objectives have been proposed for Commission approval at their June meeting. If the alternative objective is approved it will go into effect for the 2014 biological year. Below are the criteria for the alternative objective:

1) 5-year running average of $\geq 75 \%$ hunter success
2) 5-year running average age of harvested rams between 6 and 8 years of age
3) Documented occurrence of adult rams in the population

The Laramie Peak Herd Unit is comprised of 70\% private land. The southern portion (south of WY Hwy 34) is over $90 \%$ private land. Hunters can expect to pay a trespass/trophy or outfitter fee to hunt on private land. There are two state sections that hunters can access that hold sheep throughout the season and have produced adult rams in past hunting seasons. A portion of occupied sheep habitat was within the 2012 Arapahoe fire that burned over 98,000 acres. This affected sheep distribution post-fire, but above average summer/fall precipitation in 2013 and spring precipitation in 2014 resulted in increased vegetation production for pre-winter diets and early spring green up that will benefit parturition areas for pregnant ewes. The fire will have long-term benefits for wild sheep, but initially there has been a flush of noxious weed (e.g. cheatgrass, Canada thistle) that land managers will need to address. A majority of wild sheep are harvested within the northern portion of the herd unit. The Laramie Peak Wildlife Habitat Management Unit is essential for sheep habitat and harvest where 200 plus sheep inhabit.

In 2007 forty-two sheep were released in this area from the Perma-Paradise Herd in Montana. These sheep have thrived and improved the overall genetics and health of the existing herd.

During the winter of 2014 the WGFD gathered biological samples for disease surveillance, with a target goal of 150 bighorn sheep across Wyoming through the use of drop nets, free-darting, and aerial captures. The goal of this effort is to obtain information on each herd and its overall health. Some animals will be fitted with GPS radio-collars to increase our understanding of movements and habitat use. The goal for the Laramie Peak Herd Unit was to collect samples from 15 wild sheep between Sybille Canyon and Iron Mountain. Three bighorn sheep were darted in February and disease samples were collected. In addition, 3 mule deer were caught via drop net and sampled to determine if there is overlap of pathogens associated with wild sheep. There is very little known about the different bacterial pathogens existing sheep state-wide, and this will provide base-line data that will be invaluable to sheep managers. Sampling efforts will continue through March and then resume in December 2014, to avoid parturition.

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Ungulates went into the winter in good body condition as a result of the fall moisture. Winter conditions were somewhat mild with low snowpack but with periods of extreme cold temperatures, followed up with above freezing periods. A high winter mortality rate is not expected for this wild sheep herd. Spring precipitation has been above normal with expected flooding events on the Laramie and North Laramie Rivers. Refer to the following websites for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

There are currently no habitat transects specifically for wild sheep. Eighteen transects have been established within the Laramie Range looking at mixed mountain shrub communities as they relate to mule deer use. Since dietary needs for wild sheep differ from mule deer it is hard to correlate any similarities. Precipitation dictates vegetation production. In 2010 and 2011 there was ample forage available due to above average moisture. In 2012 there was very little vegetation available, resulting in wild sheep going into the winter in poor body condition. In 2013 increased precipitation resulted in increased grass, forb and shrub leader production. Habitat transects are in the process of a thorough review to determine what data to collect and how to interpret it, and ultimately apply results to big game management. Above normal spring moisture in 2014 will result in high sediment loads into the North Laramie River and Cottonwood Creek watersheds due to wild fire events in 2010. Overall this will improve riparian habitat since the ash increase the nutrients within the soils. Improved riparian habitat has already been observed in spring of 2014.

## Field Data

The 2013 post-season estimate of 250 sheep is based on pre and post-season herd composition data, along with field personnel and hunter observations. There is not a reliable working model for this herd unit. This is a smaller herd unit that provides limited
hunting opportunities, and for various reasons, does not lend itself to efficient collection of population monitoring data.

Since 1964 there have been a total of 228 wild sheep released from two herd sources: Whiskey Mountain in Wyoming and Perma-Paradise in Montana (Table 1). These transplants have helped to supplement the herd and improve overall herd health.

Table 1. Transplant release data for the Laramie Peak Bighorn Sheep Herd.

| Year | Number | Release Location | Source Herd |
| :---: | :---: | :---: | :---: |
| 1964 | 40 | North Laramie River Canyon | Whiskey Mountain Herd |
| 1965 | 36 | Labonte Canyon | Whiskey Mountain Herd |
| 1966 | 21 | Labonte Canyon | Whiskey Mountain Herd |
| 1973 | 42 | Duck Creek Canyon | Whiskey Mountain Herd |
| 1982 | 27 | Marshall | Whiskey Mountain Herd |
| 1989 | 20 | Marshall | Whiskey Mountain Herd |
| 2007 | 42 | Hay Canyon | Perma-Paradise- MT |
| Total | 228 |  |  |

Lamb recruitment continues to improve compared to ratios prior to the 2007 release. There was a total of 117 wild sheep classified in 2013. The majority of those sheep came from the Duck Creek sub-herd ( $\mathrm{n}=69$ ). The rest of the wild sheep were surveyed in the North Laramie, Sybille Canyon, and Iron Mountain sub-herds. Following this augmentation classification ratios were 33 rams:100 ewes and 38 lambs: 100 ewes, which was a significant increase in lamb production compared to pre-transplant surveys. Ram ratios remain at adequate levels for adult harvest.

In 2013, 5 out of 8 sheep licenses were successful. Two licenses will carryover to 2014 due to medical hardships. The average age was 6 years, a decrease from the long-term average of 8 years. There were two five-year old rams harvested that brought the average age down. The harvest does not reflect the overall age of rams within the population. Field personnel and hunters observed 30-40 rams that varied in age classes on Reese and Collins Peak during the season. Three sheep were harvested from the Duck Creek subherd, one from the Sybille Canyon sub-herd and one from the Iron Mountain sub-herd.

## Harvest Data

Success has reached $\geq 75 \%$ four out of the five years. This last year active license hunters harvested 5 out of 6 rams , with a success rate of $83 \%$. Hunters who pre-scout or hire an outfitter typically harvest their ram within 3-5 days. This year the average hunter effort was 15 days, which is slightly higher than the ten-year average of 12 days per harvest. Hunters that chose to not use an outfitter spend more time scouting and hunting. There is limited public land within occupied wild sheep habitat. Overcrowding is an issue that results in pushing bighorn sheep onto private land, where there is no access. To maintain high harvest success no more than 8 licenses are issued. In the past when the quota increased to 12 , success decreased drastically.

The Laramie Peak bighorn sheep season has been September 1-October 31 for the past 24 years. Prior to that, the season ran from September 1- October 14. The increased season
length appears to provide adequate opportunity to harvest a ram, given this is typically a once in a lifetime license.

In 2012 there were several fires that burned within bighorn sheep occupied habitat. The Arapahoe, Cow Camp and Russell's Camp fires burned over 112,000 acres, with the Arapahoe fire the largest ( 98,000 acres). Throughout the area there is observed recovery in vegetation. Photo points have been established throughout the fire to document plant succession. Perennial forbs and grasses along with aspen have re-established post-fire.

There is not a reliable working model for this herd unit due to limited population data collected on an annual basis.

For the 2014 season, 8 licenses will be offered for any ram along with 2 carryover licenses for a total of 10 . Hunters should have a high probability of harvesting a mature ram. There is some concern with ten hunters going to the field that success will be compromised. To improve harvest success hunters will need to put more time into scouting and hunting if they are accessing public lands.


2013 - JCR Evaluation Form

| SPECIES: Bighorn Sheep |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: BS519-ENCAMPMENT RIVER |  |  |
| HUNT AREAS: 21 |  | PREPARED BY: WILL SCHULTZ |
| 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: 0 | N/A | N/A |
| Harvest: 0 | 0 | 1 |
| Hunters: 0 | 0 | 1 |
| Hunter Success: 0\% | 0\% | 100 \% |
| Active Licenses: 0 | 0 | 1 |
| Active License Percent: 0\% | 0\% | 100 \% |
| Recreation Days: 1 | 0 | 1 |
| Days Per Animal: 0 | 0 | 1 |
| Males per 100 Females 73 | 30 |  |
| Juveniles per 100 Females 25 | 50 |  |
| Population Objective: |  | 200 |
| Management Strategy: |  | Special |
| Percent population is above (+) or below (-) objective: |  | N/A\% |
| Number of years population has been + or - objective in rece | nd: | 20 |
| Model Date: |  | None |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | NA\% | NA\% |
| Males $\geq 1$ year old: | NA\% | NA\% |
| Juveniles (<1 year old): | NA\% | NA\% |
| Total: | NA\% | NA\% |
| Proposed change in post-season population: | NA\% | NA\% |

Population Size - Postseason


## Harvest



Number of Hunters


Harvest Success
$\square$ BS519 - Hunter Success \% $\square \begin{aligned} & \text { BS519 - Active License Success } \\ & \%\end{aligned}$


## Active Licenses



## Days per Animal Harvested

$\square$ BS519-Days


Postseason Animals per 100 Females


2008-2013 Postseason Classification Summary
for Bighorn Sheep Herd BS519-ENCAMPMENT RIVER

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls <br> Obj | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | Conf Int | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { Adult } \end{aligned}$ |
| 2008 | 0 | 1 | 10 | 11 | 55\% | 9 | 45\% | 0 | 0\% | 20 | 46 | 11 | 111 | 122 | $\pm 0$ | 0 | $\pm 0$ | 0 |
| 2009 | 0 | 0 | 5 | 5 | 26\% | 6 | 32\% | 8 | 42\% | 19 | 0 | 0 | 83 | 83 | $\pm 0$ | 133 | $\pm 0$ | 73 |
| 2010 | 0 | 0 | 5 | 5 | 24\% | 15 | 71\% | 1 | 5\% | 21 | 0 | 0 | 33 | 33 | $\pm 0$ | 7 | $\pm 0$ | 5 |
| 2011 | 0 | 0 | 10 | 10 | 40\% | 12 | 48\% | 3 | 12\% | 25 | 0 | 0 | 83 | 83 | $\pm 0$ | 25 | $\pm 0$ | 14 |
| 2012 | 0 | 0 | 7 | 7 | 39\% | 10 | 56\% | 1 | 6\% | 18 | 0 | 0 | 70 | 70 | $\pm 0$ | 10 | $\pm 0$ | 6 |
| 2013 | 0 | 0 | 3 | 3 | 17\% | 10 | 56\% | 5 | 28\% | 18 | 0 | 0 | 30 | 30 | $\pm 0$ | 50 | $\pm 0$ | 38 |

# Encampment River Bighorn Sheep (BS519) 

Hunt Area 21
2014 Hunting Season

| Hunt <br> Area | Type | Dates of Seasons <br> Opens |  | Closes | Quota |
| :--- | :---: | :--- | :--- | :--- | :--- |
| License | Limitations |  |  |  |  |
| 18,21 | 1 | Sep. 1 | Oct. 31 | 2 | Limited quota | Any ram (2 residents)


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 18,21 | 1 | +2 |
| Herd Unit <br> Total | $\mathbf{1}$ | $+\mathbf{2}$ |

## Management Evaluation

Current Management Objective: 200
Management Strategy: Special
2013 Postseason Population Estimate: NA
2014 Proposed Postseason Population Estimate: NA

Bighorn sheep in the Encampment River herd unit are managed toward a numeric objective of 200. A population model has not been constructed for the herd unit. The herd is managed under the bighorn sheep special management strategy. The objective was last reviewed in 1987.

## Herd Unit Issues

Bighorn sheep numbers in this herd unit appeared to peak in the late 1970s, not long after reintroduction efforts. Bighorn sheep numbers have been in decline since the early 1980s. This decline has been attributed to decadent habitat. Domestic sheep in grazing on the west slope of the Sierra Madres also poses a disease concern for managers. The population is now at such a low number it is assumed natural recovery is not possible. Limited harvest opportunities have been offered in past years, in combination with the Douglas Creek bighorn sheep herd unit.

The State of Wyoming, and thus Wyoming Game and Fish Department, has intervened on behalf of the U.S. Forest Service, in the U.S. District Court case, BIODIVERSITY CONSERVATION ALLIANCE vs. BUTCH BLAZER, et al. This case is currently awaiting a ruling, and may affect future management of bighorn sheep in this herd unit.

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on bighorn sheep. For specific
meteorological information for the Encampment River herd unit the reviewer is referred to the following link:
http://www.ncdc.noaa.gov/cag/

## Habitat

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No bighorn sheep habitat production/utilization data was available for this herd unit. However, annual production rates should have improved from the previous year, while utilization rates on winter ranges likely continued to be high.

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality and consequently heavily influence population management for any particular big game specie.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: true mountain mahogany, antelope bitterbrush, skunkbrush sumac, big sagebrush, and four-wing saltbush. A majority of these transects were established approximately 12-13 years ago. Transects were established for several different reasons, including: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, and to compare present results with historic data sets.

## Field Data

Adequate classification data for this herd has been difficult to collect. 2013 postseason classification observations were obtained while conducting mule deer and elk surveys from a helicopter in December of 2013. The classification results were 3 adult rams, 10 ewes, and 5 lambs. Past postseason classification efforts returned similar results. Based on the trend of this classification data, a reasonable population estimate of 20-40 bighorn sheep should be considered for this herd unit.

## Population

A population model has not been constructed for this herd unit due to limited classification and no annual survival information. A review of the management objective, currently at 200 bighorn sheep, will be evaluated within the next 2-years.

## Harvest Data

The hunting season in Hunt Areas 18 and 21 was closed in 2013.

## Management Summary

There will be an open hunting season for this bighorn sheep in this herd unit in 2014. Two (2) resident licenses will be offered for the combination of Hunt Areas 18 and 21.

## Bibliography of Herd Specific Studies

Arnett, E.B. 1990. Bighorn sheep habitat selection patterns and response to fire and timber harvest in Southcentral Wyoming. M.S. Thesis, University of Wyoming, Laramie. USA. 156 pp.

Cook, J.G. 1990. Habitat, nutrition, and population ecology of two transplanted bighorn sheep populations in southcentral Wyoming. Ph.D. Thesis, University of Wyoming, Laramie. Wyoming. USA. 310 pp.
E.B. Arnett, L.L. Irwin, F. Lindzey. 1989. Ecology and Population Dynamics of Two Transplanted Bighorn Sheep Herds in Southcentral Wyoming. University of Wyoming, Laramie. Wyoming. USA. 234 pp.

Haas, W.L. 1979. Ecology of an introduced herd of Rocky Mountain bighorn sheep in southcentral Wyoming. M.S. Thesis, Colorado State University, Fort Collins. Colorado. USA. 343 pp.
and E. Decker. 1980. A study of a recently introduced bighorn sheep herd in Proc. Bien Symp. North Wild Sheep and Goat Coun. 2:143-166.


2013 - JCR Evaluation Form

| SPECIES: Elk |  |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: | :---: |
| HERD: EL531-IRON MOUNTAIN |  |  |  |
| HUNT AREAS: 6 |  |  | PREPARED BY: LEE KNOX |
|  | 2008-2012 Average | 2013 | 2014 Proposed |
| Population: | 3,043 | 2,420 | 2,037 |
| Harvest: | 689 | 716 | 655 |
| Hunters: | 1,206 | 1,814 | 1,300 |
| Hunter Success: | 57\% | 39\% | 50\% |
| Active Licenses: | 1,253 | 1,916 | 1,550 |
| Active License Percent: | 55\% | 37\% | 42\% |
| Recreation Days: | 7,246 | 12,539 | 12,000 |
| Days Per Animal: | 10.5 | 17.5 | 18.3 |
| Males per 100 Females | 18 | 29 |  |
| Juveniles per 100 Females | 46 | 49 |  |
| Population Objective: |  |  | 1,800 |
| Management Strategy: |  |  | Recreational |
| Percent population is above (+) or below (-) objective: |  |  | 34\% |
| Number of years population has been + or - objective in recent trend: |  |  | 10 |
| Model Date: |  |  | 2/21/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |  |
|  |  | JCR Year | Proposed |
|  | Females $\geq 1$ year old: | 24\% | 13\% |
|  | Males $\geq 1$ year old: | 38\% | 40\% |
|  | Juveniles (<1 year old): | 4.5\% | 4.5\% |
|  | Total: | 23\% | 24\% |
| Proposed ch | n post-season population: | 25\% | 26\% |

Population Size - Postseason
$\square$ EL531-POPULATION - EL531-OBJECTIVE


Harvest


Number of Hunters


Harvest Success
$\square$ EL531 - Hunter Success \%
EL531 - Active License Success
\%


## Active Licenses

$\square$ EL531 - Active Licenses


Days per Animal Harvested
$\square$ EL531 - Days


Postseason Animals per 100 Females
$\square$ EL531-Males $\square$ EL531 - Juveniles


| Year | Post <br> Pop | 2008-2013 Postseason Classification Summary for Elk Herd EL531-IRON MOUNTAIN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MALES |  |  |  | FEMALES |  | S |  | $\begin{array}{ll}\text { Tot } & \text { Cls } \\ \text { Cls } & \text { Obj }\end{array}$ |  | Males to 100 Females |  |  |  | Young to |  |  |
|  |  | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | YIng | Adult | Total | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{gathered} 100 \\ \text { Fem } \end{gathered}$ | Conf Int | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 3,024 | 36 | 19 | 55 | 19\% | 168 | 58\% | 66 | 23\% | 289 | 469 | 21 | 11 | 33 | $\pm 6$ | 39 | $\pm 7$ | 30 |
| 2009 | 3,012 | 70 | 21 | 91 | 8\% | 741 | 64\% | 325 | 28\% | 1,157 | 533 | 9 | 3 | 12 | $\pm 1$ | 44 | $\pm 3$ | 39 |
| 2010 | 3,168 | 53 | 26 | 79 | 8\% | 604 | 63\% | 278 | 29\% | 961 | 617 | 9 | 4 | 13 | $\pm 2$ | 46 | $\pm 4$ | 41 |
| 2011 | 3,377 | 20 | 16 | 36 | 9\% | 235 | 56\% | 145 | 35\% | 416 | 0 | 9 | 7 | 15 | $\pm 3$ | 62 | $\pm 8$ | 54 |
| 2012 | 2,636 | 52 | 46 | 98 | 26\% | 196 | 51\% | 87 | 23\% | 381 | 0 | 27 | 23 | 50 | $\pm 7$ | 44 | $\pm 7$ | 30 |
| 2013 | 2,420 | 75 | 86 | 161 | 16\% | 557 | 56\% | 273 | 28\% | 991 | 644 | 13 | 15 | 29 | $\pm 3$ | 49 | $\pm 4$ | 38 |

## 2014 HUNTING SEASONS IRON MOUNTAIN ELK (EL531)

| Hunt <br> Area | Dates of Seasons |  |  |  | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type | Opens | Closes | Quota |  |
| 6 |  | Oct. 1 | Oct. 31 |  | General license; any elk valid off national forest, |
|  |  | Nov. 1 | Jan. 31 |  | General license; antlerless elk valid off national forest |
|  | 1 | Oct. 15 | Oct. 31 | 75 | limited quota licenses; Any elk |
|  |  | Nov. 1 | Jan. 31 |  | Unused Area 6 Type 1 licenses valid for antlerless elk |
|  | 4 | Nov. 1 | Jan. 31 | 100 | Limited quota licenses; antlerless elk |
|  | 6 | Aug. 15 | Jan. 31 | 1100 | Limited quota licenses; cow or calf off national forest; |
| Archery |  |  |  |  | Refer to Section 3 of this Chapter |


| Area | Type | Quota change from <br> $\mathbf{2 0 1 4}$ |
| :---: | :---: | :---: |
| 6 | 1 | -25 |
|  | 6 | -400 |
| Herd | $\mathbf{1}$ | -25 |
| Totals | $\mathbf{6}$ | -400 |
|  |  |  |

## MANAGEMENT EVALUATION

Current Postseason Population Management Objective: 1800
Management Strategy: Recreational
2013 Postseason population Estimate: ~ 2,400
2014 Proposed Postseason Population Estimate: 2,000
The management objective for the Iron Mountain Elk Herd Unit is a post-season population objective of 1,800 elk. The management strategy is recreational management which requires maintaining a post hunt bull ratio of 15 to 29:100 cows. The objective and management strategy were last revised in 2013.

## Herd Unit Issues

The Iron Mountain Elk Herd Unit includes Hunt Areas 5 and 6 (combined into Hunt Area 6 for 2014) which are composed of mostly private lands except for the Pole Mountain National Forest which is managed under a limited quota license to maintain hunt quality. Urban sprawl and nontraditional landowners are increasing in the herd unit as well as growing stone quarries in parts of Rogers canyon and between I-80 and Wyoming Highway 287. With the second year of a Hunter Management and Access Program (HMAP) (Figure 1) and a liberal season structure,
we maintained the harvest needed to continue to decrease this population. The 2013 post-season population estimate was 2,400 with the population trending downward.

## Weather

Weather during the spring and summer of 2013 remained extremely dry. The Palmer Drought Severity Index (PDSI) ranked drought conditions in SE Wyoming as extreme through the month of August. However the fall of 2013 was extremely wet with September 2013 being the wettest September recorded in Laramie. For specific weather information please refer to the following link: http://www.ncdc.noaa.gov/.

## Habitat

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. The reader is referred to the Strategic Habitat Plan Annual Report for further background information on shrub transects.

## Field Data

A total of 991 elk were classified which exceeded the estimated classification objective of 644. Calf ratios increased from 44:100 cows in 2012 to 49: 100 cows which may have been more of a factor of an increase in classification sampling effort than improved range conditions. Bull ratios are at the high end of recreational management at 29:100 cows which is typical of private land dominated herd units. With the decrease in access, hunter success decreased by $10 \%$ and hunter effort increased by 7 days. The number of active licenses decreased from 2,487 in 2012 to 1,889 in 201. We expect this trend to continue for a few more years as the public realizes how difficult it is to find access. From the hunter satisfaction survey the number of hunters that stated they were satisfied or very satisfied with their hunt decreased from $87 \%$ in 2012 to $65 \% 2013$. This is likely a factor of hunters not realizing the there is little hunter access.

## Harvest Data

The Iron Mountain HMAP was implemented for the second year during the 2013 season, but at a reduced capacity. Department personal and landowners agreed to a more conservative program than the previous year and concentrated the harvest on the northern portion of the herd unit. We provided access to 334 hunters on to the Iron Mountain HMAP this year, harvesting 71 elk. The Sherman Hill HMA, located near the Colorado boarder, was added in 2013 but had minimal harvest. Over all cow harvest during the 2013 season was the second highest on record for this herd unit and was more than the estimated calf crop, and should result in a decrease in the elk population.

## Population

This is the first year that we have had enough data to get a model to run. The Time-Specific Juv, Constant Adult Survival, male survival coefficient model was chosen for having the lowest AIC value of 320 and Best Fit of 210. This model predicts the population declining from a high of 3,400 in 2011 to the current population estimate of 2,400 . This Model is ranked Poor for a variety of reasons including: little data available; ratio data, if available, considered highly biased because of poor sample sizes or an inability to survey the entire area; herd unit closure issues apparent; results not biologically defensible.

## Management Summary

The 2014 season structure will result in a minimum harvest of 650 elk, and will continue to reduce the population towards the objective. We will be combining Hunt Areas 5 and 6 in 2014 to allow landowners and hunters more flexibility, and to simplify regulations. With the 31 day any elk season ending Oct. 31 $1^{\text {st }}$, landowners will provide cow harvest opportunities earlier in the season before weather conditions prevent access. We are decreasing the Type 6 s from 1,500 to 1,100 for multiple reasons: we do not plan to have the Iron Mountain HMAP in 2014, and we never sold more than 900 of the 1,500 licenses. Area 6 Type 1's will be decreased to 75 licenses to address the decline in hunter success and bull harvest on the forest. Once again, 100 Area 6 type 4 s will be valid on forest to maintain antlerless harvest on Pole Mountain.


Figure 1. Map of the 2013 Hunter Management and Access Program located between Laramie and Cheyenne.



FIGURES



Comments:



2013 - JCR Evaluation Form


Population Size - Postseason


## Harvest



Number of Hunters


Harvest Success
$\square$ EL533 - Hunter Success \%
$\square$ EL533 - Active License Success


## Active Licenses



Days per Animal Harvested
$\square$ EL533 - Days


Postseason Animals per 100 Females


2008-2013 Postseason Classification Summary
for Elk Herd EL533 - SNOWY RANGE

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls Obj | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { Adult } \end{aligned}$ |
| 2008 | 10,600 | 215 | 271 | 486 | 14\% | 1,980 | 59\% | 909 | 27\% | 3,375 | 690 | 11 | 14 | 25 | $\pm 1$ | 46 | $\pm 2$ | 37 |
| 2009 | 10,100 | 279 | 179 | 458 | 15\% | 1,816 | 59\% | 802 | 26\% | 3,076 | 679 | 15 | 10 | 25 | $\pm 1$ | 44 | $\pm 2$ | 35 |
| 2010 | 10,000 | 318 | 200 | 518 | 12\% | 2,633 | 60\% | 1,211 | 28\% | 4,362 | 650 | 12 | 8 | 20 | $\pm 1$ | 46 | $\pm 2$ | 38 |
| 2011 | 9,300 | 145 | 109 | 254 | 12\% | 1,308 | 61\% | 576 | 27\% | 2,138 | 639 | 11 | 8 | 19 | $\pm 1$ | 44 | $\pm 2$ | 37 |
| 2012 | 8,331 | 252 | 218 | 470 | 13\% | 2,181 | 60\% | 990 | 27\% | 3,641 | 664 | 12 | 10 | 22 | $\pm 1$ | 45 | $\pm 2$ | 37 |
| 2013 | 6,686 | 292 | 456 | 748 | 17\% | 2,539 | 59\% | 1,023 | 24\% | 4,310 | 646 | 12 | 18 | 29 | $\pm 1$ | 40 | $\pm 1$ | 31 |

Snowy Range Elk (EL533)
Hunt Areas 8, 9, 10, 11, 12, 110, 114 and 125
2014 Hunting Seasons

| Hunt Area | Type | Dates of Seasons |  | Limited Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 1 | Oct. 1 | Oct. 31 | 150 | Limited quota licenses; any elk |
|  |  | Nov. 1 | Jan. 31 |  | Unused Area 8 Type 1 licenses |
|  |  |  |  |  | valid for any elk west of Sand |
|  |  |  |  |  | Creek Road (Albany County |
|  |  |  |  |  | Road 34) and antlerless elk east of Sand Creek Road (Albany |
|  |  |  |  |  | County Road 34) |
|  | 6 | Aug. 15 | Jan. 31 | 100 | Limited quota licenses; cow or calf |
| 9 | 6 | Oct. 1 | Oct. 14 | 150 | General license; any elk |
|  |  | Oct. 15 | Oct. 31 |  | General license; antlerless elk |
|  |  | Aug. 15 | Sep. 30 |  | Limited quota licenses; cow or calf valid on private land |
|  |  | Oct. 1 | Dec. 31 |  | Unused Area 9 Type 6 licenses valid in the entire area |
| 10 | 6 | Oct. 1 | Oct. 14 | 400 | General license; any elk |
|  |  | Oct. 15 | Oct. 31 |  | General license; antlerless elk |
|  |  | Aug. 15 | Sep. 30 |  | Limited quota licenses; cow or calf valid on private land |
|  |  | Oct. 1 | Dec. 31 |  | Unused Area 10 Type 6 licenses valid in the entire area |
| 11 | 1 | Oct. 1 | Oct. 31 | 150 | Limited quota licenses; any elk |
|  | 4 | Oct. 1 | Oct. 31 | 300 | Limited quota licenses; antlerless elk |
|  | 6 | Aug. 15 | Jan. 31 | 50 | Limited quota licenses; cow or calf valid off national forest and off the Wyoming Game and Fish Commission's Wick Wildlife Habitat Management Area |
| 12 |  | Oct. 15 | Oct. 31 |  | General license; any elk; spikes excluded |
|  | 6 | Oct. 1 | Nov. 14 | 150 | Limited quota licenses; cow or calf |
| $\begin{aligned} & 12,13,15, \\ & 110 \end{aligned}$ | 7 | Aug. 15 | Jan. 31 | 75 | Limited quota licenses; cow or calf valid on private land |
| 110 |  | Oct. 15 | Oct. 31 |  | General license; any elk, spikes excluded |
|  | 6 | Oct. 1 | Nov. 14 | 50 | Limited quota licenses; cow or calf |


|  |  | Dates of Seasons |  | Limited |  |
| :--- | :--- | :--- | :---: | :---: | :--- |
| Hunt Area | Type | Opens | Closes | Quota | Limitations |
| 114 | 1 | Oct. 1 | Jan. 31 | 50 | Limited quota licenses; any elk |
|  | 6 | Aug. 15 | Jan. 31 | 150 | Limited quota licenses; cow or <br> calf |
| 125 | 1 | Oct. 1 | Dec. 31 | 200 | Limited quota licenses; any elk <br>  |
|  | Jan. 1 | Jan. 31 |  | Unused Area 125 Type 1 <br> licenses valid for antlerless elk |  |
|  | 6 | Oct. 1 | Jan. 31 | 200 | Limited quota licenses; cow or <br> calf |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 8 | 6 | -50 |
| 10 | 6 | -400 |
| 12 | 6 | +50 |
| 110 | 6 | -50 |
| 114 | 6 | -50 |
| 125 | 1 | +25 |
| Herd Unit | $\mathbf{1}$ | $\mathbf{+ 2 5}$ |
| Total | $\mathbf{6}$ | $\mathbf{- 5 0 0}$ |

## Management Evaluation

Current Management Objective: 6,000
Management Strategy: Recreational
2013 Postseason Population Estimate: 6,700
2014 Proposed Postseason Population Estimate: 6,000
Elk in The Snowy Range herd unit are managed toward a numeric objective of 6,000 . The population was estimated using a spreadsheet models developed in 2012 and updated in 2014. The herd is managed for recreation opportunity. The management was last reviewed in 2013 (Appendix A).

## Herd Unit Issues

The Snowy Range herd unit occupies a large portion of south central Wyoming. Elk management issues here include development in the form of energy, agricultural, and residential; invasive and noxious plants; forestry and range management; and human disturbance in important elk habitat.

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on elk. For specific meteorological information for the Snowy Range herd unit the reviewer is referred to the following link: http://www.ncdc.noaa.gov/cag/

## Habitat

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No elk habitat production/utilization data was available for this herd unit. However, annual production rates should have improved from the previous year, while utilization rates on winter ranges likely continued to be high.

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality and consequently heavily influence population management for any particular big game specie.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: true mountain mahogany, antelope bitterbrush, skunkbrush sumac, big sagebrush, and four-wing saltbush. A majority of these transects were established approximately $12-13$ years ago. Transects were established for several different reasons, including: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, and to compare present results with historic data sets.

## Field Data

An adequate postseason classification sample of 4,300 elk produced ratios of 29 bulls and 40 calves per 100 cows in this herd unit (Figure 1). We classified elk from a helicopter in conjunction with local mule deer classifications. A comparison of the trend in bull ratios between general season hunt areas and limited quota hunt areas in the Snowy Range herd unit demonstrated the difference in ratios between the 2 hunting season strategies (Figure 2). Limited quota area bull ratios were generally higher in trend than in general hunt areas, the trend in general hunt area ratios has become stable to increasing in recent years.

Figure 1. 2004-2013 Bull and calf ratios from the Snowy Range Elk Herd Unit, Wyoming.


Figure 2. 2004-2013 Bull ratios from limited quota (8, 11, 114, 125) and general season $(9,10,12,110)$ Hunt Areas in the Snowy Range Elk Herd Unit, Wyoming.


## Harvest Data

The 2013 preliminary harvest survey data indicated 6,200 (.05\% decrease from 2012) active licensed hunters harvested 2,300 ( $15 \%$ increase from 2012), with a total harvest success rate of $38 \%$ ( $6 \%$ increase from 2012). Branch antlered bulls accounted for $91 \%$ of the male harvest in 2013 and $40 \%$ of the overall harvest. The spikes excluded seasons in areas 12 and 110 did result in lower spike harvest in those hunts compared to previous years. The proportion of yearlings in the male harvest for the entire herd unit also declined from $17 \%$ in 2012 to $9 \%$ in 2013. However, yearling male ratios in hunt areas 12 and 110 did not improve in 2013. Antlerless elk accounted for $56 \%$ of the total 2013 elk harvest, which was similar in the Snowy Range Herd Unit.

## Population

We continued to use the SCJ,SCA spreadsheet model to simulate Snowy Range herd unit population dynamics because it produced the lowest AICc score of the plausible models. Scores and postseason estimates were very similar between the CJ,CA model and SCJ, SCA models. Without other information (e.g. an independent population estimate or survival data) to incorporate into the model, accuracy of estimates will continue to be unknown. We considered the 2013 postseason estimate produced by the SCJ,SCA spreadsheet model to be plausible.

We rated this model as fair, and biologically defensible in our evaluation. This rating was based on criteria identified in the user's guide for the WGFD spreadsheet model (Morrison 2012).

## Management Summary

The hunting seasons in the Snowy Range Herd Unit continue to provide opportunities to reduce the overall elk population. Elk numbers appear to be declining towards the management objective and we may need to consider reducing antlerless harvest rates in the distant future. Continued spikes excluded limitations in general Hunt Areas 12 and 110 remained in an attempt to stabilize or improve future branch antlered bull ratios, which have been in decline. Future harvest opportunity for antlered elk may need to be further reduced in all general hunt areas to insure ratios do not continue to decline beyond the recreational management strategy threshold.

## Literature Cited

Morrison, T. 2012. User Guide: Spreadsheet Model for Ungulate Population data Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie. USA. 41 pp.

Bibliography of Herd Specific Studies
Reeve, A.F., F.G. Lindzey, and S.H. Anderson. 2003. Elk population in Wyoming: 19782001. Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming. USA. 138pp.

Prepared by: Will Schultz, Saratoga Wildlife Biologist

The Snowy Range Elk Herd Unit includes elk Hunt Areas 8, 9, 10, 11, 12, 110, 114, and 125 in south central Wyoming (Figure 1). The herd unit contains $1,922 \mathrm{mi}^{2}$ of delineated elk range which includes the Snowy Range of the Medicine Bow Mountains and the peripheral sagebrush grasslands located in the North Platte, Medicine Bow and Laramie River watersheds. Land ownership of the delineated elk range consists of 42\% US Forest Service (USFS), 27\% private, 18\% Wyoming Game and Fish Department (WGFD), 8\% Bureau of Land Management, and 5\% other ownership.

Figure 1. A map of the Snowy Range Elk Herd Unit and Hunt Areas located in south central Wyoming.


## POPULATION OBJECTIVE REVIEW

Historically, WGFD has managed elk using post-season population objectives as a guide for harvest management. The post-season population objective is the desired number of elk remaining in the herd unit after the annual hunting season has been completed. However, an
actual count of all elk in a herd unit would be, for all practical purposes, impossible to complete. Therefore, WGFD develops herd unit population estimates based on data collected annually through hunter-harvest surveys and post-season elk sex and age composition surveys. The population estimate is used to determine where the herd unit's elk population is at in relation to the established population objective. Generally, if the population estimate is above the population objective, WGFD will propose changes to the herd unit's next hunting seasons which will increase harvest and reduce the number of elk toward the population objective. Conversely, if the population estimate is below the population objective, WGFD will propose changes to the herd unit's next hunting seasons which will decrease harvest and increase the number of elk toward the population objective.

Post-season elk population objectives for the Snowy Range Herd Unit have been adopted and subsequently changed following periodic reviews of both biological and social considerations. These considerations have included, but were not limited to, a realized increase in the number of elk being observed the herd unit; assumed carrying capacity of the habitat; sportsmen desires; and landowner desires/tolerance.

A post-season population objective of 3,000 elk was first established for the Snowy Range Herd Unit in the late 1970s. In 1982, the population objective was increased to $4,000 \mathrm{elk}$ and subsequently increased again in 1993 to 5,000 elk. These increases to the population objective were primarily adopted to better align the population objective with the actual number of elk being observed in the herd unit during those periods. In 1997, the Snowy Range Herd Unit population objective was again increased to 6,000 elk. Since 1997, no formal review of the Snowy Range Herd Unit population objective has occurred and the population objective has remained at 6,000 elk.

Annual population estimates for the Snowy Range Herd Unit are currently produced using a computer-based, spreadsheet population model. As described previously, estimates are derived from data collected annually through hunter-harvest surveys and post-season elk sex and age composition surveys. Survey sample sizes have been considered to be adequate for this herd unit and typically exceed the minimums required to produce estimates with acceptable $80 \%$ confidence intervals. Since 2004, the annual population estimates have declined in trend (Figure 2). This trend is plausible given the significant increase in antlerless harvest which has occurred during this same period. The 2012 post-season population estimate was 8,300 elk. Reducing the herd unit's elk population estimate to the current population objective of 6,000 elk is considered achievable.

## CURRENT MANAGEMENT STRATIGIES BY HUNT AREA

A recreational management strategy has been historically prescribed for the Snowy Range Elk Herd Unit. The recreational strategy directs WGFD to manage harvest rates which will result in annual post-season bull:cow ratios being maintained within the parameters of 15 to 29 bulls per 100 cows, at the herd unit level. The Snowy Range Herd Unit consists of 8 hunt areas and several different hunting season strategies are employed across the herd unit.

Figure 2. Snowy Range Elk Herd Unit population objectives and population estimates, 1993 2012, Wyoming.


Hunt Areas 8, 114, and 125 employ limited quota hunting seasons. These hunt areas have relatively higher post-season bull:cow ratios, and although WGFD provides very liberal opportunities for both bull and antlerless elk harvest, there is relatively little harvest realized. Land ownership in these hunt areas is predominately private and the lack of public access is the ultimate factor in producing high post-season bull:cow ratios and low antlerless harvest rates. Many of the landowners in these hunt areas are either directly engaged in outfitting elk hunts or lease their property to outfitters. Consequently, these landowners exhibit a high tolerance for large herds of elk on their property. Landowners who do allow public hunting access in these hunt areas generally are experiencing significant damage to growing or stored hay crops and view the elk as competing directly with them for their agricultural income.

Hunt Area 11 is also a limited quota hunting season area. However, unlike other limited quota hunt areas in the Snowy Range Herd Unit, Hunt Area 11 contains a substantial amount of accessible public land, including the Wyoming Game and Fish Commission's Wick Wildlife Habitat Management Area and USFS lands. The management strategy is to provide a limited opportunity for the public to experience a quality elk hunt on public land in the Snowy Range. Relatively high numbers of mature bulls and low hunters numbers make this a sought after elk hunting destination.

Hunt Areas 9, 10, 12, and 110 employ a general license hunting season strategy. Currently, limited quota, reduced-price cow or calf licenses are also available in each of these hunt areas as an additional effort to increase antlerless harvest. The majority of the Snowy Range Herd Unit's annual elk harvest occurs in these 4 hunt areas. These hunt areas have relatively lower postseason bull:cow ratios than the limited quota hunt areas in the Snowy Range Herd Unit. Most of the occupied elk range in these hunt areas is public land and hunter access is very good. Additionally, many of the landowners do allow elk hunting, typically antlerless elk, in an effort to reduce the impacts from elk on their agricultural-based livelihoods.

## RECOMMENDED HERD UNIT OBJECTIVE AND MANAGEMENT STRATIGIES BY HUNT AREA

WGFD recommends continued use of the current post-season population objective of $6,000 \mathrm{elk}$ for the Snowy Range Herd Unit. Continuation of a recreational management strategy is also recommended for this herd unit. The goal for WGFD under the recommended population objective and management strategy will be to continue to reduce elk numbers toward the population objective, and optimize recreational hunting opportunities where possible, in all hunt areas throughout the Snowy Range Herd Unit.

## LANDOWNER, AGENCY, AND PUBLIC INVOLVEMENT

As part of the population objective review WGFD completed an extensive outreach process. Questionnaires and public meeting invitations were mailed to landowners, elk hunters were surveyed in the field, and news releases advertising public meetings were sent to media sources statewide. This was done in an attempt to insure all stakeholders were given an opportunity to be informed about the population objective review. Written comments received from stakeholders through the survey mailings and public meetings were complied for WGFD review. Stakeholder comments were analyzed as a component of the internal WGFD review of the Snowy Range Herd Unit population objective. The decision to recommend the continued use of a post-season population objective of 6,000 elk was strongly supported by stakeholder comments.

Once WGFD developed this recommendation, news releases advertising public meetings to discuss the population objective recommendations were sent to media sources statewide. Additionally, landowners were mailed public meeting invitations containing a brief description of the population objective. The following information is provided in an effort to describe for the reader the outreach process for the Snowy Range Elk Herd Unit population objective review.

## Landowner Involvement

In January of 2013, a landowner questionnaire was developed by WGFD to collect information about attitudes of landowners towards current elk numbers and elk management (APPENDIX A). A mailing list for all landowners in the Snowy Range Herd Unit, who owned more than 160 acres, was developed using billing addresses received from the Albany County and Carbon County Assessor's offices. Questionnaires were mailed to these landowners, along with an invitation to attend one of the upcoming public meetings, and a postage paid return envelope was also included for completed questionnaires. A return rate of $31 \%$ was obtained for the landowner questionnaires and completion results are described in Table 1.

Table 1. Snowy Range Elk Herd Unit landowner survey completion results, January 2013, Wyoming.
Questionnaires mailed to landowners of $\geq 160$ acres $=283$
Envelopes returned marked "Return to Sender" $=16$
Completed questionnaires received $\quad=84(31 \%$ return rate $)$

A summary of the landowner questionnaire responses are attached (APPENDIX B). A very important statistic derived from the survey was a measure of landowner tolerance regarding the current number of elk in the Snowy Range Herd Unit. A majority (78\%) of landowner responses indicated they would like to see the current number of elk either stay the same or decreased (Figure 3). Additionally, the landowner questionnaire also included 2 questions to gauge landowner attitudes about moose numbers. These questions were included to gather preliminary information for a future review of the Snowy Range Moose Herd Unit population objective.

Figure 3. Snowy Range Elk Herd Unit landowner questionnaire responses regarding current elk numbers (Question 2), January 2013, Wyoming.

## Currently the post-season elk pop is approx. 8,300. Do you want to see the \# of elk increase, decrease, or stay the same?



## Agency Involvement

In January of 2013, WGFD provided public meeting notices to the USFS Laramie and Brush Creek/Hayden Ranger District Offices located in Laramie and Saratoga, respectfully. USFS range and wildlife personnel attended the public meeting held in Saratoga. The Saratoga, Encampment, Rawlins Conservation District (SERCD) and Natural Resource Conservation Service offices in Saratoga were also provided with public meeting notices. Several SERCD employees and board members attended the Saratoga public meeting.

## Public Involvement

Meetings to review the Snowy Range Elk Herd Unit population objective were held in Saratoga, Laramie, Cheyenne, and Medicine Bow. News releases advertising public meetings were sent by WGFD to media services statewide (APPENDIX C). Saratoga radio station, KKGA 99.3 FM, interviewed the WGFD Saratoga Game Warden as a means of promoting the Saratoga meeting. At the meetings other local herd unit population objectives, currently being presented for public review, were also discussed at these meetings (e.g. Cooper Lake Pronghorn and Sierra Madre Elk Herd Units). Table 2 describes meeting attendance rates and the sign-in sheets are compiled in APPENDIX D.

Many of the attendees at the population objective review meeting were landowners who had already completed and returned the landowner questionnaire they had received earlier in January. Surveys designed to gauge the attitudes of sportsmen and other stakeholders were distributed to non-landowners who attended these public meetings (APPENDIX E). In response to a question
similar to one included in the landowner survey, all $(\mathrm{n}=26)$ of the non-landowners who attended these meetings indicated they would like to see the current number of elk either stay the same or

Table 2. Snowy Range Elk Herd Unit population objective review public meeting attendance results, January and February 2013, Wyoming.

| Location | Date | Attendance |
| :--- | :--- | :--- |
| Saratoga Meeting | January 28 | 11 |
| Laramie Meeting | January 29 | 12 |
| Cheyenne Meeting | January 29 | 8 |
| Medicine Bow Meeting | February 6 | 4 |

decreased (Figure 4). Many of the concerns expressed by non-landowners at these public meetings were in regard to perceived impacts by current elk numbers on declining local mule deer populations.

Figure 4. Snowy Range Elk Herd Unit public meeting non-landowner survey responses regarding current elk numbers (Question 7), January 2013, Wyoming.

> Currently the post-season elk population estimate is approx. 8,300. Do you want to see the \# of elkincrease, decrease, or stay the same?

$\square$ Increase
$\square$ Decrease
$\square$ Stay the Same

## Notification of the Proposed Population Objective

In May of 2013, WGFD once again completed an extensive outreach process to inform stake holders of the proposal to continue managing the Snowy Range Herd Unit toward a population objective of 6,000 elk. Landowners previously identified during the questionnaire process were mailed a postcard invitation to attend upcoming population objective proposal meetings. The postcard also contained a brief description of the proposed population objective.

News releases advertising this round of public meetings were sent by WGFD to media services statewide (APPENDIX F). Meetings to present the Snowy Range Elk Herd Unit population objective proposal were held again in Cheyenne, Laramie, Saratoga, and Medicine Bow. Other local herd unit population objective proposals were also presented to the public at these meetings (e.g. Cooper Lake Pronghorn and Sierra Madre Elk Herd Units). Table 3 describes meeting attendance rates for the presentation of the proposed population objective. Sign-in sheets for these meetings are compiled in APPENDIX G. After the herd unit presentations, attendees were
given an opportunity to fill out a comment form explaining whether they agreed or disagreed with the proposal as presented and to provide any additional comments (APPENDIX H). Figure 5 describes the results from the 10 proposal meeting comment forms which meeting attendees submitted. After a review of the comments received during the proposal meeting process, WGFD decided to continue forward with the proposed population objective. This concluded the population objective review and proposal development process for the Snowy Range Elk Herd Unit.

Table 3. Snowy Range Elk Herd Unit population objective proposal presentation meeting attendance results, May 2013, Wyoming.

| Location | Date | Attendance |
| :--- | :--- | :---: |
| Cheyenne Meeting | May 8 | 4 |
| Laramie Meeting | May 15 | 4 |
| Saratoga Meeting | May 20 | 10 |
| Medicine Bow Meeting | May 21 | 0 |

Figure 5. Snowy Range Elk Herd Unit population objective proposal presentation meeting comment form results from the 10 who returned forms, May 2013, Wyoming.


## SNOWY RANGE ELK \& MOOSE <br> MANAGEMENT LANDOWNER QUESTIONNAIRE

1. Please circle the elk hunt area number where the majority of your property is located:
HUNT AREA:
8
9
10
11
12110
114
125
2. Currently the post-hunt elk population estimate for the Snowy Range Herd Unit is approximately 8,200 (2.5 $\mathrm{elk} / \mathrm{mi}^{2}$ ). Do you want to see the number of elk:

INCREASE $\qquad$ DECREASE $\qquad$ STAY THE SAME $\qquad$
3. If you want to see the number of elk INCREASE or DECREASE, what percentage change to the current population size would you prefer? (Skip if you answered "STAY THE SAME" above)
$\qquad$ 30\% $\qquad$ 40\% $\qquad$ 50\% $\qquad$ OTHER (specify) $\qquad$
4. Indicate your satisfaction level with the current Snowy Range Herd Unit elk population (circle the number that corresponds to your satisfaction level):

| $\mathbf{1}$ | $\mathbf{2}$ |  | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :--- | :---: | :---: |
| Very | Somewhat | Neither satisfied | Somewhat | $\mathbf{5}$ |
| dissatisfied | dissatisfied | nor dissatisfied | satisfied | Very |
|  |  |  | satisfied |  |

5. If there were a negative impact to mule deer because of the current number of elk in the Snowy Range Herd Unit, would you want to see the number of elk?

INCREASE $\qquad$ DECREASE $\qquad$ STAY THE SAME $\qquad$
6. Do you allow antlerless elk harvest on your property?
YES $\qquad$ NO $\qquad$

- If you answered YES, how many antlerless elk were harvested on your property during the 2012 hunting season? (circle your response) $\quad \mathbf{0} \quad \mathbf{1 - 1 0} \quad \mathbf{1 1 - 2 5} \quad \mathbf{2 6}^{+}$

7. Do you want to see the number of moose in the Snowy Range Herd Unit:

INCREASE $\qquad$ DECREASE $\qquad$ STAY THE SAME $\qquad$
8. Indicate your satisfaction level with the current Snowy Range Herd Unit moose population (circle the number that corresponds to your satisfaction level):

| $\mathbf{1}$ | $\mathbf{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Very | Somewhat <br> dissatisfied | Neither satisfied <br> nor dissatisfied | Somewhat <br> datissatisfied |  |

## 9. Additional comments:

| SNOWY RANGE ELK |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Hunt Area where property is located |  |  |  |  |  |  |  |  |
| Hunt Area | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 1 0}$ | $\mathbf{1 1 4}$ | $\mathbf{1 2 5}$ |
| Tallies | 9 | 12 | 15 | 3 | 7 | 6 | 10 | 7 |


| Currently the post-hunt elk pop is approx. 8,200- do you want to see the \# of elk: |  |  |  |
| :--- | :---: | :---: | :---: |
|  Increase Stay the Same     <br> Tallies 16  Decrease    |  |  |  |


| If you want to see the number of elk Increase or Decrease what \% change do you want to see |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Decrease | 20\% | 30\% | 40\% | 50\% | Other (specify) |
| Tallies | 10 | 7 | 1 | 10 | 75\%-1 |
| Increase | 20\% | 30\% | 40\% | 50\% | Other (specify) |
| Tallies | 7 | 3 | 2 | 2 | 10\%-1 |


| Indicate your satisfaction with the current elk population |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| Tallies | 14 | 15 | 15 | 21 | 6 |


| If there were negative impacts to MD because of the \# of elk would you want to see the \# of elk: |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Increase |  | Decrease |  | Stay the Same |
| Tallies | 8 |  | 47 |  | 16 |


| Do you allow antlerless elk harvest on your property? |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yes | No |  | If Yes, how many elk were harvested in 2012 season |  |  |  |  |
| Tallies | 52 | 18 |  | 0 | 1 to 10 | 11 to 25 | 26+ |  |
|  |  |  | Tallies | 14 | 27 | 7 | 1 | , |


| Do you want to see the number of moose in the Snowy Range Unit: |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Increase |  | Decrease |  | Stay the Same |
| Tallies | 36 |  | 8 |  | 27 |

Indicate your satisfaction level with the current Snowy Range moose population

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Tallies | 3 | 16 | 21 | 17 | 13 |

## ADDITIONAL COMMENTS

The problem is that all the elk in the Centennial Valley during hunting season are on the 91 Ranch. They need to be hunted and dispersed. The elk won't go back up on the mountain so increasing the herd only puts more in that area or on the 91 Ranch.
If hunters can't get to areas to hunt what good are your seasons and areas???
I think there is much to be learned about "carrying capacity" in regards to these decisions. In the past we have had more trouble with elk coming onto the cattle feed grounds than we do now. I think the antlerless harvest has helped, but I realize there are many other factors as well.
Too long of a season- kill more cows harvest the junk bulls with cows somehow. Very little deeded land in 114 so lets get together with Tyler Sims/G\&F/ Landowners and work it out.
G\&F should re-imburse ranchers for the damage to their hay crop (while the hay is growing and after
harvest). We know that amount would need to be quantified but hopefully without too many hoops to jump.

## NO ELK ON PROPERY

Would like to have map of areas included in survey. Hunted 4 times and did not see 1 elk!!!
Wyoming Central hand Improvement Co. Sold this land to the State Board of Lands and Investments on March 29, 2012 - from Amy King
Elk herd has too few bulls and too many cows. Mule deer will come back strong when the number of mountain lions is reduced.
Horn restrictions on mule deer and elk and more law enforcement on road hunters as well as four-wheelers on closed roads!
To many outfitters controlling the population and access to some hunting areas in our region.
I honestly do not understand the reason for these repetitive questionnaires.
I love to see and hunt elk but the numbers are out of control. It is very difficult to control numbers when land owners do not allow hunting. In a drought as we are in now it is very difficult to provide forage and maintain good rangeland health when there are too many elk and antelope competeing for forage. Elk do a lot of damage that is difficult to document.

I can't add much input on the Snowy Range herd as I am spending all my hunting time in 125.
I know nothing about this area!!
We have too many elk in the Centennial valley. During hunting season the elk hang out on the 91 Ranch to avoid being shot at. A lot of hunters leave empty- that would really appreciate taking home a cow elk.
Mule deer are being pushed out by whitetail, but even whitetail numbers are down. We only have a small number of elk on our property so we rarely allow hunting. I prefer deer and moose over elk because they do not compete for the same type of feed my cows like. I also cut and $\qquad$ ? hay, feeding it on the ground all winter rather than bailing. This low cost type of operation does not work very well with alot of elk around. I think the flood two years ago may have taken a toll on the deer population (fawns) on our ranch.
My address is 12706 HWY 230. I'm not sure what hunting area that is. I am a summer time resident and my property is leased by Big Creek Ranch and is posted because of damage to gates by hunters. I would like to see the mule deer population come back. - Sue Breeden
Make the elk hunters take or harvest three cow or calf elk before they can harvest a bull elk. Give the cow tags a lesser cost than the trophy bull tags.
We have no elk or moose to hunt on our property- Biddick Ranch.
\#6. The outfitter encourages people to hunt trophy elkl and charges so much most people won't hunt antlerless or small bulls. We now have a herd in 114 that has lots of small junk bulls with twisted and uneven antlers. The bulls number 40 45 in one group of $75-80$. They number $75-80$ in a group of $15-175$. If they are running $50 \%$. This is WAY out of line and needs corrected.

Concerned about mule deer population. Would be in favor of decreasing elk population if that would help deer herds.
If reducing elk herd would help mule deer population, would be for reducing elk. There aren't very many moose.
Decrease antlerless elk only! The bull/cow ratio in the Snowy Range elk herd is way below 25\% or even 15\% in some herds. The solution is to make the area limited quota. The next best solution is to kill more cow/calves. Don't blame the mule deer decline on too many elk; is one factor in a complicated issue, mild drought, predators and habitat loss and energy development and subdivision housing being important causes too. Obviously we should manage for more moose, that is a no brainer.
I'm clueless, I don't hunt. And, there are too few deer in the area so I don't allow hunting.
No mule deer shot on my land since 1997. Mule deer populations are bad. To many cats and bear and coyotes. (More bear licenses and maybe only bucks during hunting season) or maybe a quota system on mule deer. Bear licenses and Moose licenses shoulbe be available to landowners first as area 8 is almost entirely private. (Landowners either resident or nonresident should have this respect)

I had several people with type 6 in area 9 we didn't fill because the elk stayed high- but that means they arent in the hay meadows so it is working. Too many elk still but with Hamakers buying property east of Bald Mountain I would expect to see those elk moved around more and available for harvest (Area 10) and in Area 9 I think the hunt is helping also.

TOO DAMN MANY!! When you government bosses introduce a species in an area you should be responsible for all the damage they do when you FAIL to manage them. There are so many damn moose on the Big Laramie River now that they are killing our trees and willows. In the Spring they eat our grass that we hay in the fall. you should drastically reduce their numbers and be responsible for keeping them off our property or pay for all the damage they do. (Norma Thompson)

I am in favor of a very limited quota for mule deer bucks of four points or better on each side. I feel our mule deer population is dangerously low.
I think the elk herd on our property are way too many. The number of elk that show up in the winter is staggering. The elk herd shows up in big numbers. Setting themselves up for a disease outbreak. Not to mention the property damage they do and the amount of forage they eat. They are taking a big toll on our ranching business. Particularly in our drought conditions.
With the antler/antlerless season running Oct 1-Oct 31, general license hunters hold out for antlered elk until too late and don't get any elk. Starting hunting Aug 15 (rifle) is a risk if there are bow hunters in area (with no orange) and rifle hunters in the area.

Need more moose!

## PUBLIC MEETINGS UPCOMING ON FUTURE MANAGEMENT OF BIG GAME IN SOUTHEAST WYOMING

LARAMIE - Over the next few weeks, the Wyoming Game and Fish Department will hold a series of public meetings to receive input on the future management of big game species in southeast Wyoming.

Game and Fish is reviewing herd unit objectives for several big game herds, Including the following hunt units: Snowy Range Elk (Hunt Areas 8, 9, 10, 11, 12, 110, 114, and 125); Snowy Range Moose (Hunt Areas 38 and 41); Sierra Madre Elk (Hunt Areas 13, 15, 21, 108, and 130); Centennial Pronghorn (Hunt Areas 45, 44, and 37); and Cooper Lake Pronghorn (Hunt Area 43).

The meetings will be held at the following locations:

- Saratoga - Saratoga Town Hall, 6 p.m., Jan. 28
Snowy Range Elk
Snowy Range Moose
Sierra Madre Elk
- Laramie - Laramie Fire Hall \#3, 6 p.m., Jan. 29
Snowy Range Elk
Snowy Range Moose
Sierra Madre Elk
Centennial Pronghorn
Cooper Lake Pronghorn
- Cheyenne - Wyoming Game and Fish Headquarters, 6 p.m., Jan. 30
Snowy Range Elk
Snowy Range Moose
Centennial Pronghorn
Cooper Lake Pronghorn
- Medicine Bow - Medicine Bow Community Center, 6 p.m., Feb. 6
Snowy Range Elk
Snowy Range Moose
Cooper Lake Pronghorn

Game and Fish will be welcoming any comments from the public on management of big game in southeast Wyoming. Contact Laramie Game and Fish biologist Lee Knox at (307) 745-4046 or Saratoga wildlife biologist Will Schultz at (307) 326-3020 with additional questions.

The Wyoming Game and Fish Department supports the Americans with Disabilities Act. Every effort will be made for reasonable accommodations. Contact the Laramie Game and Fish office at (307) 745-4046.
-WGFD-



APPENDIXD
Cheyemme 1/30/2013
Wame City
EMAIL

Bill Cushing, Cheyeune,

 Sim Decheue
billcushing10@ qumilleom jfisher275 te ynAcis - Co0 Rwarzy @ Bmail.com m Kaillie Emillect.com sas@bailyrane hcom morite sero oynhe. rom imohuntingagmal.com Mobilerd teo Gmail.com

## SNOWY RANGE ELK HUNTER SURVEY

1. If you are a RESIDENT, please indicate the county in which you live. If you are nonresident, please indicate which state you live:

## County of residence

$\qquad$
2. How many years have you been hunting elk in the Snowy Range Elk Herd? This is my $1^{\text {st }}$ year $\quad 2$ to $3 \quad 4$ to 7 $\qquad$ More than 10 $\qquad$
3. What hunt area do you primarily hunt within the Snowy Range Elk Herd (circle the area you hunt the most)?

$$
\begin{array}{llllllll}
8 & 9 & 10 & 11 & 12 & 110 & 114 & 125
\end{array}
$$

4. When hunting in the hunt area indicated above, which hunting methods do you participate in?

## Archery

$\qquad$ Firearm $\qquad$
5. How many days do you spend hunting in the hunt area indicated above?

1 to 3 $\qquad$ 4 to 7 $\qquad$ 8 or more $\qquad$
6. Why do you choose to hunt the Snowy Range Elk Herd (mark all that apply)?

7. Currently the post-hunt population estimate for the Snowy Range Elk Herd is approximately 8,200 elk ( $2.5 \mathrm{elk} / \mathrm{mi}^{2}$ ). Do you want to see the number of elk:

## DECREASE__ INCREASE

$\qquad$ STAY THE SAME $\qquad$
8. Do you hunt mule deer in any of the mule deer hunt areas listed below (mark all that apply)?
$\qquad$ 75 $\qquad$ 76 $\qquad$ 78 $\qquad$ 79 $\qquad$
9. If there were a negative impact to the mule deer herd because of the current Snowy Range Elk herd population size, would you want to see the number of elk:

DECREASE $\qquad$ INCREASE $\qquad$ STAY THE SAME $\qquad$
10. Do you want to see the number of moose in the Snowy Range Herd Unit:

INCREASE $\qquad$ DECREASE $\qquad$ STAY THE SAME $\qquad$
11. Indicate your satisfaction level with the current Snowy Range Herd Unit moose population (circle the number that corresponds to your satisfaction level):

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: | :---: |
| Very <br> dissatisfied | Somewhat <br> dissatisfied | Neither satisfied <br> nor dissatisfied | Somewhat <br> satisfied | Very <br> satisfied |

## Additional comments:

## PUBLIC MEETINGS TO DISCUS POPULATION OBJECTIVES FOR

## PRONGHORN/ELK/MOOSE IN SARATOGA, LARAMIE, CHEYENNE AREAS

CHEYENNE - The Wyoming Game and Fish Department will be holding a series of public meetings to discuss the review of herd unit population objectives for pronghorn, elk and moose in the Saratoga, Laramie and Cheyenne areas. Lee Knox, Game and Fish wildlife biologist in Laramie said proposals will include the following herd units:

Cooper Lake Pronghorn (Hunt Area 43)
Centennial Pronghorn (Hunt Areas 45,44,37)
Snowy Range Elk (Hunt Areas $8,9,10,11,12,110,114,125$ )
Snowy Range Moose (Hunt Areas 38,41)

Meetings will be held at 6 p.m. at the following locations:
Cheyenne, May 8, WGFD Office Building, Elk Room
Laramie, May 15, Fire Hall \#2
Saratoga, May 20, Town Hall
Medicine Bow, May 21, Community Center

Contact: Lee Knox (307)-745-4046 or Will Shultz (307)-326-3020

## Wyoming Game and Fish Department

5400 Bishop Blvd. Cheyenne, WY 82006
Phone: (307) 777-4600 Fax: (307) 777-4699

## Cheyenne Public Meeting- Sign-In Sheet

 May 8, 2013
## Name

1. Dave crespo

Address


Phone Number

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}
$$

2. Tom warowk

3. Jon Hinze 4500 Carmel $12 r$.
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 

Wyoming Game and Fish Department
GOVERNOR

5400 Bishop Blvd. Cheyenne, WY 82006
Phone: (307) 777-4600 Fax: (307) 777-4699
Web site: http://gf.state.wy.us

May 15, 2012
Laramie
Objective Review
Please take the time to fill out the survey- THANK YOU for your participation!

$$
\text { ID Hamaken B0×327 Contemnialmy } 7453591
$$

```
```

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
23
24

20 may Saratoga Town Hall
2013 Snowy Range \& Sierra Madre EIK


## 2013 SNOWY RANGE ELK HERD UNIT MANAGEMENT OBJECTIVE REVIEW

 Please provide us with your input - THANK YOU for your participation!1. Do you support the proposal to maintain the current Management Objective of a postseason population estimate of $6,000 \mathrm{elk}$ ?

AGREE DISARGEE

Additional comments:
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Please return by 27 May 2013 to:
WGFD
PO Box 1432
Saratoga, WY 82331
INPUT

| Species: | ELK |
| :--- | :--- |
| Biologist: | WILL SCHULTZ |
| Herd Unit \& No.: | SNOWY RANGE 533 |
| Model date: | $03 / 04 / 14$ |




| Classification Counts |  |  |  |  |  |  |  | Harvest |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Juvenile/Female Ratio |  |  | Total Male/Female Ratio |  |  |  |  |  |  |  |  | Segment Harvest Rate (\% of Prehunt Segment) |  |
| Year | Derived Est | Field Est | Field SE | Derived Est | Field Est wl | Field Est w/o bull adi | Field SE | Juv | Yrl males | 2+ Males | Females | Total Harvest | Total Males | Females |
| 1993 |  | 42.13 | 1.87 | 21.52 | 20.61 | 15.46 | 1.02 | 210 | 249 | 611 | 901 | 1971 | 42.3 | 14.2 |
| 1994 |  | 49.70 | 2.36 | 22.12 | 24.29 | 18.22 | 1.27 | 113 | 199 | 474 | 442 | 1228 | 35.6 | 7.4 |
| 1995 |  | 49.30 | 2.21 | 25.40 | 30.69 | 23.02 | 1.37 | 118 | 206 | 422 | 433 | 1179 | 30.3 | 7.1 |
| 1996 |  | 49.15 | 1.77 | 31.91 | 30.12 | 22.59 | 1.09 | 115 | 118 | 428 | 785 | 1446 | 23.6 | 12.4 |
| 1997 |  | 50.75 | 2.76 | 31.01 | 23.13 | 17.35 | 1.42 | 161 | 266 | 685 | 873 | 1985 | 36.8 | 14.2 |
| 1998 |  | 50.87 | 2.19 | 32.88 | 29.80 | 22.35 | 1.31 | 111 | 158 | 540 | 562 | 1371 | 28.6 | 9.6 |
| 1999 |  | 50.59 | 2.23 | 33.96 | 46.80 | 35.10 | 1.76 | 192 | 203 | 547 | 592 | 1534 | 29.3 | 10.0 |
| 2000 |  | 48.69 | 2.36 | 38.54 | 35.54 | 26.66 | 1.61 | 153 | 117 | 467 | 658 | 1395 | 22.3 | 11.1 |
| 2001 |  | 50.13 | 2.54 | 38.48 | 54.00 | 40.50 | 2.21 | 188 | 165 | 630 | 665 | 1648 | 28.4 | 11.3 |
| 2002 |  | 49.60 | 2.14 | 38.31 | 40.63 | 30.48 | 1.57 | 107 | 97 | 626 | 445 | 1275 | 26.1 | 7.7 |
| 2003 |  | 40.43 | 1.90 | 37.97 | 38.78 | 29.09 | 1.54 | 99 | 149 | 629 | 536 | 1413 | 27.4 | 9.0 |
| 2004 |  | 56.11 | 2.26 | 33.29 | 27.24 | 20.43 | 1.20 | 122 | 113 | 778 | 472 | 1485 | 33.2 | 8.1 |
| 2005 |  | 43.37 | 1.64 | 34.34 | 33.68 | 25.26 | 1.17 | 110 | 190 | 606 | 520 | 1426 | 29.3 | 8.5 |
| 2006 |  | 47.53 | 2.51 | 31.85 | 22.72 | 17.04 | 1.34 | 127 | 160 | 705 | 548 | 1540 | 32.9 | 9.0 |
| 2007 |  | 44.94 | 1.45 | 31.02 | 37.87 | 28.40 | 1.08 | 134 | 157 | 683 | 583 | 1557 | 32.8 | 9.5 |
| 2008 |  | 45.91 | 1.84 | 30.14 | 32.73 | 24.55 | 1.24 | 121 | 179 | 637 | 599 | 1536 | 33.0 | 9.8 |
| 2009 |  | 44.16 | 1.87 | 29.91 | 33.63 | 25.22 | 1.32 | 148 | 189 | 642 | 743 | 1722 | 34.4 | 12.3 |
| 2010 |  | 45.99 | 1.60 | 28.37 | 26.23 | 19.67 | 0.95 | 126 | 171 | 638 | 585 | 1520 | 35.4 | 10.1 |
| 2011 |  | 44.04 | 2.20 | 29.49 | 25.89 | 19.42 | 1.33 | 176 | 117 | 648 | 845 | 1786 | 34.7 | 14.8 |
| 2012 |  | 45.39 | 1.74 | 27.34 | 28.73 | 21.55 | 1.10 | 141 | 153 | 733 | 949 | 1976 | 42.5 | 17.8 |
| 2013 |  | 40.29 | 1.49 | 21.36 | 39.28 | 29.46 | 1.23 | 205 | 102 | 892 | 972 | 2171 | 55.5 | 21.9 |
| 2014 |  | 47.00 | 1.86 | 14.00 | 32.67 | 24.50 | 1.23 | 150 | 100 | 700 | 700 | 1650 | 63.0 | 17.2 |
| 2015 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2016 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2017 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2018 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2019 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2020 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2021 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2022 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2023 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2024 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2025 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

FIGURES






2013 - JCR Evaluation Form

| SPECIES: Elk |  |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: | :---: |
| HERD: EL534-SHIRLEY MOUNTAIN |  |  |  |
| HUNT AREAS: 16 |  |  | PREPARED BY: WILL SCHULTZ |
|  | 2008-2012 Average | 2013 | 2014 Proposed |
| Population: | 1,376 | 1,462 | 1,204 |
| Harvest: | 311 | 378 | 351 |
| Hunters: | 580 | 581 | 700 |
| Hunter Success: | 54\% | 65\% | 50\% |
| Active Licenses: | 603 | 607 | 634 |
| Active License Percent: | 52\% | 62\% | 55\% |
| Recreation Days: | 4,434 | 3,765 | 4,200 |
| Days Per Animal: | 14.3 | 10.0 | 12.0 |
| Males per 100 Females | 35 | 39 |  |
| Juveniles per 100 Females | 45 | 45 |  |
| Population Objective: |  |  | 800 |
| Management Strategy: |  |  | Recreational |
| Percent population is above (+) or below (-) objective: |  |  | 83\% |
| Number of years population has been + or - objective in recent trend: |  |  | 20 |
| Model Date: |  |  | 3/17/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |  |
|  |  | JCR Year | Proposed |
|  | Females $\geq 1$ year old: | 40.9\% | 29\% |
|  | Males $\geq 1$ year old: | 49.3\% | 41\% |
|  | Juveniles (<1 year old): | 11.6\% | 11\% |
|  | Total: | 33.4\% | 27\% |
| Proposed ch | post-season population: | -36.6\% | -29\% |

## Population Size - Postseason

$\square$ EL534-POPULATION - EL534-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ EL534 - Hunter Success \%
$\square$ EL534 - Active License Success


## Active Licenses



Days per Animal Harvested
$\square$ EL534 - Days


Postseason Animals per 100 Females


2008-2013 Postseason Classification Summary
for Elk Herd EL534-SHIRLEY MOUNTAIN

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls <br> Obj | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | YIng | Adult | Total | $\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | Conf | $\begin{aligned} & 100 \\ & \text { Adult } \end{aligned}$ |
| 2008 | 1,800 | 71 | 91 | 162 | 20\% | 444 | 54\% | 216 | 26\% | 822 | 440 | 16 | 20 | 36 | $\pm 3$ | 49 | $\pm 4$ | 36 |
| 2009 | 1,600 | 37 | 108 | 145 | 25\% | 295 | 50\% | 151 | 26\% | 591 | 463 | 13 | 37 | 49 | $\pm 5$ | 51 | $\pm 5$ | 34 |
| 2010 | 1,400 | 49 | 42 | 91 | 13\% | 449 | 65\% | 151 | 22\% | 691 | 469 | 11 | 9 | 20 | $\pm 2$ | 34 | $\pm 3$ | 28 |
| 2011 | 1,200 | 0 | 0 | 0 | 0\% | 0 | 0\% | 0 | 0\% | 0 | 500 | 0 | 0 | 0 | $\pm 0$ | 0 | $\pm 0$ | 0 |
| 2012 | 880 | 8 | 32 | 40 | 23\% | 81 | 47\% | 53 | 30\% | 174 | 420 | 10 | 40 | 49 | $\pm 11$ | 65 | $\pm 13$ | 44 |
| 2013 | 1,462 | 52 | 90 | 142 | 21\% | 365 | 54\% | 165 | 25\% | 672 | 568 | 14 | 25 | 39 | $\pm 4$ | 45 | $\pm 4$ | 33 |

Shirley Mountain Elk (EL534)
Hunt Areas 16
2014 Hunting Seasons

| Hunt Area | Type | Dates of Seasons |  | Limited Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Opens | Closes |  |  |
| 16 | 1 | Oct. 1 | Oct. 31 | 150 | Limited quota licenses; any elk |
|  | 2 | Nov. 1 | Nov. 30 | 50 | Limited quota licenses; any elk |
|  |  | Dec. 1 | Dec. 15 |  | Unused Area 16 Type 1 and |
|  |  |  |  |  | Type 2 licenses valid on the Beer Mug Hunter Management Area (HMA permission slip required) |
|  |  | Jan. 15 | Jan. 31 |  | Unused Area 16 Type 1 and |
|  |  |  |  |  | Type 2 licenses valid on the Beer Mug Hunter Management Area (HMA permission slip required) |
|  | 4 | Oct. 1 | Jan. 31 | 300 | Limited quota licenses; antlerless elk |
|  | 6 | Aug. 15 | Sep. 30 | 200 | Limited quota licenses; cow or calf valid on private land |
|  |  | Oct. 1 | Jan. 31 |  | Unused Area 16 Type 6 licenses valid in the entire area |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| $\mathbf{1 6}$ | $\mathbf{1 , 2 , 4 , 6}$ | NONE |

## Management Evaluation

Current Management Objective: 800
Management Strategy: Recreational
2013 Postseason Population Estimate: 1,500
2014 Proposed Postseason Population Estimate: 1,200
Elk in the Shirley Mountain herd unit are managed toward a numeric objective of 800 . The population was estimated using a spreadsheet model developed in 2012 and updated in 2014. The herd is managed for recreation opportunity. The objective was last reviewed in 1997 and planned for review in 2015.

## Herd Unit Issues

The University of Wyoming continues to monitor elk on the Dunlap Wind Farm on the east side of this herd unit. This wind farm is proposed to expand into more crucial winter range in the future. In 2013, elk radio-collar data from the Dunlap Wind Farm research project was used to refine the eastern boundary of the herd unit. Our ability to manage elk numbers through harvest is difficult because a large portion of the elk habitat in this
herd unit is owned by one landowner who provides limited access. Most elk damage in this herd unit occurs on hay meadows in the northern portion during summer months.

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on elk. For specific meteorological information for the Shirley Mountain herd unit the reviewer is referred to the following link:
http://www.ncdc.noaa.gov/cag/

## Habitat

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No elk habitat production/utilization data was available for this herd unit. However, annual production rates should have improved from the previous year, while utilization rates on winter ranges likely continued to be high.

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality and consequently heavily influence population management for any particular big game specie.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: true mountain mahogany, antelope bitterbrush, skunkbrush sumac, big sagebrush, and four-wing saltbush. A majority of these transects were established approximately $12-13$ years ago. Transects were established for several different reasons, including: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, and to compare present results with historic data sets.

## Field Data

A postseason classification survey was conducted by helicopter in March of 2014. The 2013 postseason ratios were 39 bulls and 45 claves/ 100 cows, from an dequate sample size of 672 elk. Trend from past classifications infer this herd unit was still above the recreational management strategy maximum for bull ratios (Figure 1). The collection of classification data has varied in methodology primarily due to no dedicated flight funding for this herd. Managers considered the 2013 postseason survey to representative of the elk within this herd unit.

Figure 1. Wyoming 2004-2013 Shirley Mountain Elk Herd Unit bull and calf ratio trend.


## Harvest Data

Preliminary elk harvest survey data indicated 630 active licensed hunters harvested 430 elk in 2013, with an overall success rate of $70 \%$. The 2013 harvest success increased $8 \%$ from the 2012 harvest. The 2013 bull harvest ( $\mathrm{n}=130$ ) was a $26 \%$ decrease from 2012. The cause for the decrease in bull harvest was unknown, as all factors were similar across the years. Antlerless harvest ( $\mathrm{n}=290$ ) increased $33 \%$ in 2013; with only an additional allocation of 50 Type 6 licenses.

## Population

In 2012 a CJ,CA model was selected to model the Shirley Mountain Herd Unit's population dynamics due to the low AIC score, simplicity, and plausible population estimate. In 2013 this model ceased to function due to harvest rates exceeding the population estimate. Classification data for this herd has accuracy issues from less than adequate sampling efforts; and most likely the assumption of this herd unit being a closed population has been violated also. These factors make it difficult to develop reliable annual population estimates.

In 2013 the TSJ,CA,MSC was selected to simulate elk population dynamics in the Shirley Mountain herd unit. This model was the only model in the 2013 suite of models
which did not cease to function by 2015 due to the continued harvest rates exceeding the predicted population estimate. The TSJ,CA,MSC model also produced the best fit and AICc score. Selecting the TSJ,CA,MSC model resulted in a retroactive increase of the 2012 postseason population estimate that was previously reported in the Job Completion Report database. The 2013 postseason population estimate was plausible; however it was likely to be a significant over estimate. Without other information (e.g. an independent population estimate or survival data) to incorporate into the model, accuracy of estimates will continue to be unknown.

We rated this model as poor, and not biologically defensible in our evaluation. This rating was based on criteria identified in the user's guide for the WGFD spreadsheet model (Morrison 2012). The poor rating was primarily due to inadequate sample sizes for postseason classification surveys and the likely violation of the assumption that this is a closed population.

## Management Summary

Shirley Mountain Herd Unit hunting seasons are similar to last year and will continue to provide opportunities to reduce the overall elk population and reduce bull ratios towards recreational parameters. Elk numbers appear to be trending towards the management objective. Given recent drought conditions, competition with other ungulates, and some damage issues, we consider it prudent to continue to provide opportunities to harvest elk in this herd unit. The continued operation of the Beer Mug Mountain Hunter Management Area has provided additional harvest opportunities for many elk hunters in this herd unit.

## Literature Cited

Morrison, T. 2012. User Guide: Spreadsheet Model for Ungulate Population data Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie. USA. 41 pp .

## Bibliography of Herd Specific Studies

None at present time.
INPUT

| Biologist: | SCHULTZ |
| :--- | :--- |
| Herd Unit \& No.: | SHIRLEY EL534 |



| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$ |  |
| :---: | :---: |
| $\stackrel{\text { ָi }}{\stackrel{1}{\circ}}$ |  |
|  |  <br>  <br>  |
| $\stackrel{\text { ゙ٓ }}{\stackrel{-}{\circ}}$ |  <br>  |
|    <br>    |  <br>  <br>  |
|  |  |
|  |  |
| $\begin{aligned} & \text { ॠ } \\ & \stackrel{\text { ® }}{2} \end{aligned}$ |  - |



范

FIGURES



[^0] END


2013 - JCR Evaluation Form

| SPECIES: Elk |  | PERIOD: 6/1/2013-5/31/2014 |  |
| :---: | :---: | :---: | :---: |
| HERD: EL730-RAWHIDE |  |  |  |
| HUNT AREAS: 3 | 2008-2012 Average | PREPARED BY: MARTIN HICKS |  |
|  |  | $\underline{2013}$ | 2014 Proposed |
| Hunter Satisfaction Percent | 59\% | 59\% | 60\% |
| Landowner Satisfaction Percent | 46\% | 46\% | 60\% |
| Harvest: | 89 | 94 | 125 |
| Hunters: | 206 | 231 | 250 |
| Hunter Success: | 43\% | 41\% | 50 \% |
| Active Licenses: | 219 | 248 | 275 |
| Active License Percentage: | 41\% | 38\% | 45 \% |
| Recreation Days: | 1,669 | 1,576 | 1,600 |
| Days Per Animal: | 18.8 | 16.8 | 12.8 |
| Males per 100 Females: | 70 | 0 |  |
| Juveniles per 100 Females | 58 | 0 |  |
| Satisifaction Based Objective |  |  | 60\% |
| Management Strategy: |  |  | Special |
| Percent population is above (+) or (-) objective: |  |  | -17\% |
| Number of years population has been + or - objective in recent trend: |  |  | 2 |



## Harvest



Number of Hunters


Harvest Success
$\square$ EL730 - Hunter Success \%
EL730 - Active License Success


## Active Licenses

$\square$ EL730 - Active Licenses


Days per Animal Harvested
$\square$ EL730 - Days


Postseason Animals per 100 Females


| Hunt <br> Area | Type | Dates of Seasons <br> Opens | Closes | Quota | Limitations |
| :---: | :---: | :--- | :--- | :---: | :--- |
| 3 | Gen | Sept. 15 | -Oct. 14 |  | Any elk General License; <br> any elk south of U.S. Hwy |
|  |  | Oct. 15 | Jan. 31 |  | 26 <br> Archery |
|  | 6 Aug. 15 | Jan. 31 | 200 | Limited quota; cow or calf <br> Sept. 1 | Sept. 14 | | Refer to Section 3 of this |
| :--- |
| Chapter |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 3 | 1 | -75 |
|  | 4 | -50 |
|  | 6 | +125 |

## Management Evaluation

Current Management Objective: 1) Landowner and hunter satisfaction; Target goal: $\geq 60 \%$
2) Male "quality"; Target goal $: \geq 61 \%$ branch antlered bulls in harvest survey

Management Strategy: Special
2013 Hunter Satisfaction Estimate: 1) $56 \%$ satisfied, 2) $26 \%$ neutral, 3) $18 \%$ dissatisfied 2013 Landowner Satisfaction Estimate: 1) $30 \%$ satisfied, 2) $33 \%$ neutral, 3) $37 \%$ dissatisfied
Male Quality: 96\% branch antlered bulls
Most Recent 3-year Running Average Hunter Satisfaction Estimate: 57\%
Most Recent 3-year Running Average Landowner Satisfaction Estimate: 38\%

## Management Issues

The management objective for this herd was changed in 2012 from a post-season population objective of 40 elk to a nonnumeric population objective based on landowner and hunter satisfaction and the percentage of branch antlered bulls in the harvest. The management strategy was also changed from recreational to special. We will follow trends over time to make management decisions based on constituent satisfaction and bull harvest parameters. There is not a working model for this herd unit due to our inability to collect adequate population data.

This herd unit has been difficult to manage based on our inability to collect adequate herd composition data along with field harvest data. Based on field personnel and landowner observations we estimate there are over 400 elk in the Rawhide Elk Herd, with the population expanding south of the North Platte River into Goshen, Platte and Laramie Counties. There have been several public meetings to address the increasing population, and as a result the herd boundary was expanded south to the Colorado border for the 2012 season. Additionally the portion of Area 3 north of U.S. Highway 26 was changed to a general season for the 2014 season (the southern portion was changed to a general in 2011). The general season will open September 15 and the Type 6 license will start on August 15 to address damage.

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Ungulates went into the winter in good body condition as a result of the fall moisture. Winter conditions were somewhat mild with low snowpack but with periods of extreme cold temperatures, followed up with above freezing periods. Refer to the following websites for weather data:
http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

There are no established habitat transects for this herd unit. Recent fire activity in 2012 and 2010 burned over 20,000 acres will likely improve elk habitat by reducing competition from encroaching conifers on perennial grasses and forbs, which provide key elk forage.

## Field/Harvest Data

Harvest success and effort has fluctuated the past five years, and when the 2013 harvest data is compared to the five-year average success decreased and effort increased. Harvest is driven by access and if hunters are limited to public land, success decreases and effort increases. Finding elk in this herd unit can be difficult due to landownership patterns. Access is restricted to the Broom Creek HMA north of US Hwy 26 and is dependent on crop damage south of US Hwy 26. A majority of landowners do not want elk south of the highway and are willing to allow access. In 2011 elk were plentiful and hunters were successful. In 2012 the severe drought displaced elk and they were not found in traditional places (i.e. alfalfa fields). In 2013 above average late summer/fall precipitation re-distributed elk which increased forage production and as a result elk were not dependent upon irrigated crops. The high percentage of branch antlered elk is indicative of the quality of bulls and the amount of private land that provides sanctuaries to allow bulls to reach maturity.

Licenses numbers have fluctuated from 50 to 200 over the years. Starting in 2011 that portion of Hunt Areas 3 south of U.S. Highway 26 became a general season. After several public meetings over the past three years coupled with a landowner survey it was decided to convert that portion of Area 3 north of US Hwy 26 from a limited quota area to a general hunt area. This will simplify the management by allowing hunters with a general license the opportunity to hunt in other general areas if they are not successful in hunt area 3. Population and damage issues will be easier to address with this type of season structure as well.

Since this herd unit changed to a satisfaction management evaluation and the percent of branch antlered bulls in the harvest we no longer collect classification data.

## Landowner/Hunter Satisfaction Survey Results

The hunter satisfaction survey showed that $56 \%$ of the hunters were satisfied and $26 \%$ were neutral. Only $18 \%$ were dissatisfied with their quality of hunt. Based on limited conversations from hunters in the field there was concern over finding elk. However, the majority of the complaints came from hunters that were trying to hunt the limited public land. Hunters need to secure private land to hunt prior to the season or realize they will have to pay a trophy or outfitters fee. The landowner satisfaction survey showed that $30 \%$ of the landowners were satisfied, $33 \%$ were neutral and $37 \%$ were dissatisfied. There were 27 surveys returned, slightly lower than 2013, which had a return rate of $73 \%$. Sample size was adequate to provide confidence in the survey. Hunters satisfaction was just slightly below the target range of $60 \%$
but it is obvious landowners are not satisfied with the elk herd with the same target range of $60 \%$. Based on return comments there were numerous reasons for their dissatisfaction: 1) damage, 2) no elk during the hunting season, 3) fires displaced elk and 4) landowners do not want elk south of Highway 26,5 ) uncooperative neighbors and 6) not if favor of the general season north of Hwy 26. The percent of branched antlered bulls in the survey was $96 \%$. Our ability to manage this segment of the population is limited due to access and adult bulls within the harvest will likely remain high.

## Management Summary

In summary the 2014 season is designed to reduce elk numbers throughout the entire hunt area by having both portions (north and south of US Hwy 26) a general firearm season from Sept 15Oct 14, and the 109 days of an any season elk south of US Hwy 26. The Type 6 licenses increased by 125 license and will run from August 15 through January 31. Given the new season structure we hope to attain a harvest of around 125 elk.


2013 - JCR Evaluation Form

| SPECIES: Moose |  |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: | :---: |
| HERD: MO545-SNOWY RANGE |  |  |  |
| HUNT AREAS: 38, 41 |  |  | PREPARED BY: WILL SCHULTZ |
|  | 2008-2012 Average | 2013 | 2014 Proposed |
| Population: | 0 | N/A | N/A |
| Harvest: | 46 | 55 | 45 |
| Hunters: | 50 | 58 | 48 |
| Hunter Success: | 92\% | 95\% | 94 \% |
| Active Licenses: | 50 | 58 | 48 |
| Active License Percent: | 92\% | 95\% | 94 \% |
| Recreation Days: | 367 | 599 | 420 |
| Days Per Animal: | 8.0 | 10.9 | 9.3 |
| Males per 100 Females | 107 | 119 |  |
| Juveniles per 100 Females | 47 | 67 |  |
| Population Objective: |  |  | 100 |
| Management Strategy: |  |  | Special |
| Percent population is above (+) or below (-) objective: |  |  | N/A\% |
| Number of years population has been + or - objective in recent trend: |  |  | 0 |
| Model Date: |  |  | None |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |  |
|  |  | JCR Year | Proposed |
|  | Females $\geq 1$ year old: | NA\% | NA\% |
|  | Males $\geq 1$ year old: | NA\% | NA\% |
|  | Juveniles (<1 year old): | NA\% | NA\% |
|  | Total: | NA\% | NA\% |
| Proposed ch | in post-season population: | NA\% | NA\% |

## Population Size - Postseason



## Harvest



Number of Hunters


Harvest Success
$\square$ MO545 - Hunter Success \% MO545 - Active License Success


## Active Licenses


$\square$ MO545-Days


Postseason Animals per 100 Females


2008-2013 Postseason Classification Summary
for Moose Herd MO545-SNOWY RANGE

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls <br> Obj | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | YIng | Adult | Total | Conf | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$ | $\begin{aligned} & 100 \\ & \text { Adult } \end{aligned}$ |
| 2008 | 0 | 1 | 11 | 12 | 52\% | 8 | 35\% | 3 | 13\% | 23 | 144 | 12 | 138 | 150 | $\pm 0$ | 38 | $\pm 0$ | 15 |
| 2009 | 0 | 4 | 21 | 25 | 58\% | 12 | 28\% | 6 | 14\% | 43 | 0 | 33 | 175 | 208 | $\pm 0$ | 50 | $\pm 0$ | 16 |
| 2010 | 0 | 7 | 17 | 24 | 32\% | 36 | 48\% | 15 | 20\% | 75 | 0 | 19 | 47 | 67 | $\pm 0$ | 42 | $\pm 0$ | 25 |
| 2011 | 0 | 3 | 46 | 49 | 40\% | 50 | 41\% | 23 | 19\% | 122 | 0 | 6 | 92 | 98 | $\pm 0$ | 46 | $\pm 0$ | 23 |
| 2012 | 0 | 4 | 14 | 18 | 44\% | 14 | 34\% | 9 | 22\% | 41 | 0 | 29 | 100 | 129 | $\pm 0$ | 64 | $\pm 0$ | 28 |
| 2013 | 0 | 5 | 27 | 32 | 42\% | 27 | 35\% | 18 | 23\% | 77 | 0 | 19 | 100 | 119 | $\pm 0$ | 67 | $\pm 0$ | 31 |

# Snowy Range Moose (MO545) 

Hunt Areas 38, 41
2014 Hunting Seasons

|  |  | Dates of Seasons |  | Limited |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Hunt Area | Type | Opens | Closes | Quota | Limitations |
| 38,41 | 1 | Oct. 1 | Nov. 14 | 20 | Limited quota licenses; any <br> moose, except cow moose |
|  | 4 | Oct. 1 | Nov. 14 | 25 | with calf at side |
| Limited quota licenses; <br> antlerless moose, except cow <br> moose with calf at side |  |  |  |  |  |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| Herd Unit | 1 | -5 |
| Total | 4 | -10 |

## Management Evaluation

Current Management Objective: 100
Management Strategy: Special
2013 Postseason Population Estimate: NA
2014 Proposed Postseason Population Estimate: NA

Moose in the Snowy Range herd unit are managed toward a numeric objective of 100. A moose population model has not been developed for this herd unit. The herd is managed under a special management strategy. The objective was last reviewed in 1997.

## Herd Unit Issues

The Snowy Range herd unit stretches across southern Wyoming, along the Colorado border, from Baggs to Cheyenne. Moose are found year-round in areas on Pole Mountain, Sierra Madre Mountains, and most notably, the Snowy Range Mountains. These moose descended from moose transplanted in Colorado and were not native to this area historically. Challenges for managing moose in this herd unit include a rapidly changing forest ecosystem, high infestation rates for parasites, and human conflict/safety. Limited population monitoring for moose has been an issue in this herd unit also.

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on moose. For specific meteorological information for the Snowy Range herd unit the reviewer is referred to the following link: http://www.ncdc.noaa.gov/cag/

## Habitat

Moose habitat conditions are currently being monitored across Wyoming and in the North Park, Colorado area through a University of Wyoming project. Preliminary results published in a recent annual report for this project indicated the Snowy Range's willow habitat quality and moose fitness were relatively low when compared to the other areas (Appendix A).

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No WGFD moose habitat production/utilization data was available for this herd unit. However, annual production rates were assumed to have improved from the previous year, while utilization rates on winter ranges were assumed to have continued to be high.

## Field Data

Traditionally there has been little allocation of funding in this herd unit to collect moose classification data. Moose classification data has been collected incidentally during annual mule deer and elk classification surveys. In 2011 and 2013, approximately 8 additional hours of helicopter flight time was allocated to collect moose classification data in the Snowy Range herd unit resulting in samples of 122 and 77 moose, respectively. Twenty (20) of the 77 moose observed during the 2013 survey were located in Hunt Area 41. The 2013 classification ratios were 119 bulls: 100 cows and 67 calves: 100 cows. Although the moose population size was unknown during the 2011 and 2013 surveys, managers thought the observed ratios were plausible.

## Harvest Data

In 2013, the weighted harvest estimates indicated 63 hunters harvested 28 bulls, 25 cows and 1 calf (lab data indicated 2 calves). A total of 3 illegally harvested moose were documented in 2013. Male lab-aged tooth samples ( $n=24$ ) indicated this year's median age and percentage of the bull harvest $\geq 5$ years of age, were within the "prime-age bull" class (Figures 1, 2 and 3) (Thomas 2008). Age class distribution from female lab-aged tooth samples ( $\mathrm{n}=19$ ) indicated $47 \%$ of the antlerless moose harvest were $\leq 2$ years old (Figure 4).

Median age for tooth samples from harvested bulls declined in 2013 and is a statistic of concern for managers. The 2013 median bull age decreased, it was at 4 years of age which was the lower parameter for the "prime-age bull" class. The Snowy Range has a reputation for producing trophy quality bulls. An objective for managers is to sustain both quantity and quality for the bull segment of this moose population. The reported ages for harvested antlerless moose were another statistic of concern for the Snowy Range moose managers. Since hunters were limited to harvesting either cows without calves at their side, or calves, managers anticipated a majority of the antlerless harvest would have consisted of antlerless moose 2 years of age or less. Perhaps in 2013, there were more cow moose of prime breeding age without a calf at side due to drought
conditions experienced in 2012. This may contributed to an increased proportion of prime breeding age cow moose being harvested. As stated earlier in this report, making inferences from small or incomplete data sets has hampered the ability of managers to make management decisions of significant consequence for this herd unit.

## Population

A Wyoming Spreadsheet model has not been developed for this herd unit. A population model would only be of value if better annual herd abundance/composition data and, or, survival data were consistently collected. We assume from observations and harvest data, overall moose numbers are stable to slightly decreasing in trend.

## Management Summary

For the first time since we began hunting moose in this herd unit back in 2000, we decreased license numbers for the 2014 hunting season. This decrease was in part an effort to become more conservative with harvest rates, as a precaution, in case moose numbers were approaching our postseason management objective of 100 moose.

Figure 1. Median age of bulls harvested for the Snowy Range Moose herd unit, from lab aged teeth (n=24), Wyoming, 2013.


Figure 2. Average (3-year running) median age of bulls harvested for the Snowy Range Moose Herd Unit, from lab aged teeth ( $\mathrm{n}=24$ ), Wyoming, 2013.


Figure 3. Annual Percentages of the bull harvest $\geq 5$-years in age from Snowy Range Moose Herd Unit, from lab aged teeth ( $\mathrm{n}=24$ ), Wyoming, 2013.


Figure 4. Age class distribution for antlerless moose harvested from Snowy Range Moose Herd Unit, Wyoming, 2013.


## Literature Cited

Jesmer, B., Jacob Goheen, Matthew Kauffman, Kevin Monteith, Aly Courtemanch. 2013. Statewide Moose Habitat Project: Linking Habitat and Nutrition with Population Performance in Wyoming Moose. Annual Report 2013. Department of Zoology and Physiology, University of Wyoming, Laramie. 10 pp.

Thomas, T. P. 2008. Moose Population Management Recommendations. Wyoming Game and Fish Department, Cheyenne. 17 pp.

## Bibliography of Herd Specific Studies

Baigas, P. E. 2008. Winter Habitat selection, winter diet, and seasonal distribution mapping of Shiras moose (Alces alces shirasi) in southeastern Wyoming. M.S. Thesis, Univ. Wyoming, Laramie, Wyoming. USA. 220 pp.

Wyoming Game and Fish Department [WGFD]. 2000. Snowy Range - Sierra Madre Moose Herd Management Plan. Wyoming Game and Fish Department, Laramie. USA. 15 pp .


## Statewide Moose Habitat Project:

## Linking Habitat and Nutrition with Population Performance in Wyoming Moose

## Annual Report 2013

Brett Jesmer ${ }^{1,2}$, Jacob Goheen ${ }^{1}$, Matthew Kauffman ${ }^{3}$, Kevin Monteith ${ }^{1,2}$, Aly Courtemanch ${ }^{4}$
${ }^{1}$ Department of Zoology and Physiology, University of Wyoming ${ }^{2}$ Wyoming Cooperative Fish and Wildlife Research Unit ${ }^{3}$ USGS, Wyoming Cooperative Fish and Wildlife Research Unit
${ }^{4}$ Wyoming Game and Fish Department


## Background \& Objectives

The Wyoming Game \& Fish Department (WGFD), Wyoming Cooperative Fish and Wildlife Research Unit, and the University of Wyoming initiated the Statewide Moose Habitat Project in June 2011. Currently, Shiras moose (Alces alces shirasi) herds in the state (Fig. 1) are exhibiting a wide range of population performance, with some declining and some relatively stable or even increasing despite historic declines (Fig. 2). For the declining herds, potential mechanisms that may affect carrying capacity are habitat deterioration due to current and historic overbrowsing (Boertje et al. 2007; McArt et al. 2009), and regional variation in forage quality due to climatic warming and drying (Monteith et al. in review) or other disturbances, such as large, intense wildfire (Vartanian 2011) or bark beetle (Dendroctonus spp.) outbreaks. Additionally, a new and growing predator community is present in the northwest corner of the state and may prevent higher recruitment rates from being achieved, but these predators can not account for declines elsewhere in Wyoming, Colorado, and Utah. Further, a newly emergent disease, the carotid artery worm (Elaeophora schneideri), appears to be prevalent in Wyoming (Henningsen et al. 2012). Unfortunately we do not yet understand the impacts of this disease on the nutritional condition and survival of moose.

In combination with the observed range in population performance, variability of moose habitat (see Vartanian 2011, Monteith et al. in review) in the state represents a timely opportunity to evaluate habitat-performance relationships (i.e. local carrying capacities). Such a statewide habitat evaluation could serve as a benchmark to understand the relationship between moose habitat and population performance and would provide the WGFD with "early warning" metrics to predict where and when declines are likely to occur, and would improve the scientific basis of moose population objectives.

This project aims to both understand the role of habitat and nutrition in recent declines in population performance as well as provide managers with tools from which they can assess a populations proximity to carrying capacity and adapt management strategies accordingly. Therefore, we have developed the following objectives:

1. Understand the relationship between resource limitation and herd productivity.
2. Establish meaningful browse condition indices for monitoring and management purposes.
3. Explore alternative 'early warning' metrics to preempt declines in herd productivity.


Fig. 1- Map depicting the project study areas.


Fig. 2 - Trends in calf-cow ratios from 1990-2012 across our six areas. Trend lines established through piecewise regression. Piecewise regression quantifies multiple differing trends in a single data set. Note that the trend lines represented for the Snowy Range and Bighorn herd units are not statistically significant ( $\mathrm{P}>0.05$ ), meaning slopes are not different than zero.

## Research Design \& Methods

Vartanian (2011) concluded that winter-range was non-limiting to the Jackson moose population because of the underutilization of 'peripheral' winter-ranges that were previously described as heavily used by Houston (1967). Therefore, we used stratified random sampling across core (red) and peripheral (blue) winter ranges (both ranges defined as areas available to overwintering moose) to characterize the extent of willow browse utilization in each of six study areas. To quantify winter habitat condition, we used the WGFD Wildlife Observation System (WOS) moose location dataset and a local convex hull (LoCoH) homerange estimator to calculate core (\%50 herd-range; red) and peripheral (\%95 herd-range; blue) herd-ranges (Figs. 3, 4 and 5). Only WOS location data collected posthunt from 2000 through 2012 were used in herd-range analyses.


Fig. 3- Distribution of core (50\%; red) and peripheral ( $95 \%$; blue) moose winter ranges across the six study areas. Note- not all core and peripheral areas displayed here were sampled (see pg. 4 for details).


Fig. 4- In each herd unit, such as North Park (shown here), core (red) and peripheral (blue) moose habitat was identified to guide sampling of willow browse conditions and scat (see pg. 5 for details).


Fig. 5- Within each core and peripheral range, such as North Park's Michigan River (shown here), randomly generated points were drawn in willow habitat to prevent 246 observer bias (see pg. 5 for details).


Fig. 6- Map depicting randomly generated sample sites in willow habitat along the Michigan River, Jackson County, CO.

Within core and peripheral ranges we plotted random points with a minimum of 200 m spacing between points using a generalized random tessellation stratified (GRTS; Stevens and Olsen 2004) sample generator (R; Sdraw package) to develop a spatially-balanced random sample across the two strata. Using the NLCD we calculated sampling weights by determining the proportional amount of willow habitat in each polygon (i.e. drainage) per herd unit using the tabulate area tool in ArcGIS (ESRI 2011; spatial analyst tools); meaning drainages with relatively greater amounts of willow received greater number of sampling points. In 2012 financial and logistical constraints determined that 30 live-dead (LD; measure of willow condition; Keigley and Fager 2006) transects could be accomplished per herd unit. Therefore, we multiplied the proportion of willow (i.e. sampling weight) in each of the six drainages per herd unit by 30 to calculated the final number of transects per drainage. In 2013 we increased our sample by adding 5-10 transects per herd unit as time permitted. Final sample sites were chosen in the sequential order that they were generated in GIS. However, in some cases a lack of land owner permissions or accessibility inhibited us from sampling in exact sequential order.

We completed LD transects at each randomly selected sampling point across the six study areas (Fig. 6 and 7). According to previously established protocols (see Keigley and Fager 2006; Vartanian 2011; Smith et al. 2011), 20 willow plants of the most preferred species (planeleaf willow (Salix planifolia) in the eastern herds, Booth's willow ${ }^{247}$ (Salix boothii) in the western herds) were measured along a

Fig. 7-Technician, Allie Hunter, takes an LD reading along Spread Creek, Teton County, WY.
random bearing every 10 m starting at each sampling point. LD, leader length of the dominant apical meristem, percent browse, percent decadence, and plant height were recorded at each plant.

To assess winter diet (i.e. foraging behaviors) and identify important winter forages, we collected scat samples opportunistically and along LD transects (Fig. 8) according to a sterile protocol developed to eliminate cross contamination. We only collected scats that appeared to be fresh and were determined to have originated from an adult moose according to morphometrics (i.e. size). Using molecular techniques we will group scat piles by individual and determine sex prior to diet and pregnancy analyses (via progestagen analysis; Monfort et al.1993), and potentially assess nutritional state via additional hormone (triiodothyronine (T3) and glucocorticoid (GC)) assays (Wasser et al. 2000, 2010). Progestagen, T3 and GC thresholds will be validated using scats, blood samples and ultrasonography data collected during captures associated with the Sublette and Uinta moose studies.


Fig. 8- Scats found along North Horse Creek, Sublette County, WY.


To characterize the range of diets (i.e. foraging behavior) and the quality of forages used by moose on summer ranges, we once again employed a stratified random sampling design. Due to the widely-reported preference for riparian and upland shrub forage amongst moose inhabiting montane regions of North America (e.g., Renecker and Schwartz 2007), we chose two strata consisting of: (1) willow habitat, and (2) all other upland habitat types (i.e. deciduous forest, coniferous forest, mixed deciduous and coniferous forest, shrub-scrub, grassland-herbaceous, and emergent herbaceous wetlands) as defined by the NLCD. We again used a generalized random tessellation stratified sample generator to develop a spatially-balanced random sample across the two strata (Fig. 9). To ensure that our scat-dog teams found as many fecal samples as possible, we restricted our search effort across strata to the top 25\% quantile (summer core area) of the Baigas et al. (2010) summer RSF model. Logistical and financial constraints determined that 20 transects ( 10 willow, 10 upland) per herd unit (i.e. statewide $n=120$ ) could be completed within a single season. We chose sampling points in sequential order from which they were drawn until 10 samples from each strata were established using the following criteria: (1) $<1500 \mathrm{~m}$ from a drivable road due to the limited distance in which a working dog can travel on any given day, (2) the willow patch must have been $\geq 2000 \mathrm{~m}$ in Euclidean length, and (3) the patches were within a logistically feasible proximity (daily travel distance) to another sampling point whereby we could complete two transects per day. Each transect started at, or intersected with, the sampling point.

We collected moose scats along each transect when present (see figs. 10 and 11) using a sterile protocol. Currently, we are extracting DNA from scats (see pg. 6) to determine individuality and sex prior to diet (microhistology or qPCR) and forage quality (fecal nitrogen) analyses.

Fig. 9- Map depicting randomly generated sample sites across different habitats where summer scats were sampled in Sublette and Teton Counties, WY.


Fig. 10- Map illustrating a scat transect ( $5-6 \mathrm{~km}$ each) in willow habitat. Kilgore Creek, Sublette County, WY.


Fig. 11- Orbee the detection dog is very proud of his find (mostly he just wants his reward; a short game of fetch with a ball).

Only 'fresh' (i.e. typically <1 week old) scats were collected along each transect. When a fresh scat was identified, approximate age, GPS location, and habitat information was collected. The scat was then wrapped in non-bleached filter paper (coffee filters) and placed inside a plastic freezer bag on a bed of silica desiccant (photo A). The desiccant removed moisture from the scat during the day while we were in the field to help reduce bacterial action which degrades genetic material. Scats were placed in a portable battery/propane-powered freezer immediately upon returning to the campsite; followed by a cryofreezer once returning to the University of Wyoming.

Most of the DNA in moose feces is found in a 'mucusy membrane' on the outside of the 'pellets' where intestinal cells are sloughed off as the pellets move through the intestinal track. We collect portions of this 'mucusy membrane' (photo B) and place in vials with a substance that breaks down cell walls to release the genetic material (photo D1). We used a modified 'ungulate' DNA extraction protocol tailored specifically for moose scat in combination with Qiagen- QIAamp DNA stool mini kits© to obtain purified DNA products (photo D2).

Through a series of chemical reactions (photo C) we duplicate the DNA many times over and characterize nine specific portions of the genome that allow us to 'fingerprint' the sample so that we can identify which individual the scat came from and its sex (photo E). For example, photo E depicts nine microsatellite loci, represented by black, green, red and blue 'peaks', amplified from one individual moose tissue sample. The two tall blue peaks near the middle of the graph represent genetic products associated with the X and Y chromosomes; meaning this individual is a male. This process is extremely similar to that used by criminal forensic scientists and has been streamlined so that individual and sex identifications can be assessed simultaneously. We repeat this process 2-3 times for each of 1022 fecal samples we have collected and use computer software to match the samples to individual moose.


To understand how winter habitat condition and quality, and summer diet and forage quality affect the

## nutritional condition of moose, we are measuring

 autumn kidney fat. The amount of fat found attached to the kidney is a good predictor of total body fat in moose (Stephenson et al. 1998). We collaborated with the WGFD, Colorado Division of Parks and Wildlife (CDPW) and the Utah Division of Wildlife Resources (UDWR) to solicit hunters to collect kidneys from harvested moose. With each kidney, hunters and WGFD, CDPW and UDWR biologists noted sex, age, location of harvest (hunt area and drainage or GPS location), antler size (if any), and parasite information.Kidneys were gathered by regional WGFD, CDPW and UDWR personnel and delivered to the University of Wyoming where we measured kidney fat levels according to the long-standing method of Riney (1955). Briefly, the kidney fat method requires an undisturbed kidney (photo A; identification of disturbed kidneys described below), trimming of excess fat to standardize the area of fat measured (photo B ), removal of the fat and perirenal membrane (photo $C$ ), and a weight measurement of both the kidney and the kidney fat (photo D).

While processing each kidney, we noted whether or not the kidney and its fat appeared to be disturbed. Because some hunters are unfamiliar with moose anatomy and the exact location of the kidneys, they sometimes cut through visceral fat or the visceral cavity too quickly and end up cutting into the kidney fat (photo E) and even the kidney itself (photo F); and sometimes hunters even mistakenly removed all of the kidney fat (photo G). We omitted all samples from the final dataset that showed evidence of the fat being disturbed.


## Preliminary Results

All results constitute preliminary summaries, not final statistical analyses, and should be interpreted with caution. Additionally, the data presented here only reflects autumn nutrition of moose and winter habitat condition (i.e. quantity of forage). Because winter habitat condition is only one of many factors that may influence autumn nutritional condition in moose (Parker et al. 2009), these trends may be strengthened or weakened once winter and summer diet and forage quality are included in the dataset. In fact, due to metabolic demands, summer forage quantity and quality is often considered to be more important to overall nutritional condition and pregnancy rates than winter forage condition or quality (Cook et al. 2004). It is also important to note that we only present nutritional condition data associated with male moose. The current and past (i.e. 1-2 years prior) reproductive history of all harvested female moose from which we received kidneys was unknown. The energetic demands associated with gestation, lactation, and calf rearing are important factors in determining autumn nutritional condition, and therefore likelihood of pregnancy, in ungulates (Parker et al. 2009). Consequently, we chose to use males as our indicator of nutritional condition at the population level because they are not influenced by as many factors as females. Even though males do not represent the reproductive portion of the population, and therefore have less influence of population performance, their nutritional condition remains an excellent indicator of habitat quality (Parker et al. 2009).

We completed 349 LD transects, representing 6980 individual willow plants measured, during 2012-2013. During 2011-2012 we analyzed 346 undisturbed kidneys for nutritional condition assessment. In 2013 we collected an additional 190 kidneys to supplement our sample. Nutritional condition was significantly different between the six herd units (Fig. 12; ANCOVA: $\mathrm{P}=0.02$; note small sample size in Jackson). Willow condition according to the LD index was also significantly different amongst herd units (Fig. 13; ANOVA: $\mathrm{P}=<0.001$ ). Interestingly, Baigas (2008) reported to the WGFD even poorer LD values for planeleaf willow. Also, we found that LD values for planeleaf willow and Booth's willow differed (T-test: $\mathrm{P}=<0.001$ ). It is important to note that, although LD measures for all herd units dominated by planeleaf are statistically similar, the herd units exhibiting greater overall variation in willow condition (i.e. more patches in relatively good condition) are those herd units which are exhibiting better population performance (see figs. 14 and 15). Planeleaf is highly preferred by all large herbivores and consistently


Fig. 12- Variation in male nutritional condition. X's represent means, bars represent medians, vertical lines represent the data range, circles represent outliers, and numbers represent sample sizes.


Fig. 13- Variation in willow condition. X's represent means, bars represent medians, vertical lines represent the data range, circles represent outliers, and numbers represent sample sizes.

browsed heavily. We further summarize the data using the means ( $x$ 's) from figures 14 and 15 to assess the general relationships between winter forage condition, nutritional condition, and population performance (i.e. recruitment rates). Figure 14 suggests a positive relationship between winter willow condition and population performance. Figure 15 reveals that male nutritional condition in autumn is likely a good indicator of local population performance. Being able to observe relationships between winter-range willow condition and population performance, and autumn nutritional condition and population performance using simple summary statistics is an encouraging result. We suspect that we will be able to make strong linkages between habitat, nutritional condition and population performance once we assess summer and winter forage selection and quality.

## Current and Future Work

We continue to work towards achieving our objective of linking habitat and nutrition to population performance (Fig. 16), and suspect to complete the project during the fall of 2014. We are making daily progress with DNA extractions and genotype analysis. In 2013 we completed and a second round of winter scat collections willow condition transects. Additionally, we completed a third round of kidney collections, which represents the finalization of our field efforts. During spring 2014 we plan complete genetic analyses of 1022 fecal samples and obtain finalized diet composition, diet quality, pregnancy and spring nutritional condition data sets. Once data production is completed, we will produce comprehensive reports for state and federal agencies, provide presentations and materials for the general public, and publish our results in peer-reviewed scientific journals during summer and fall 2014.


Fig. 14- General relationship between willow condition and nutritional condition of moose. Herd units dominated by the highly preferred planeleaf willow (grey circles) decline in performance as variation in willow declines, whereas herd units dominated by Booth's will decline in performance as overall willow condition declines (see fig. 13 and page 8 for details).


Fig. 15- General relationship between moose nutritional condition and population performance.


Fig. 16-General conceptual model depicting the linkages between habitat condition, diet quality and composition, and nutritional condition to population performance in Shiras moose. Once we able to quantify how these factors influence population performance, we will be able to provide managers with tools that will allow them to understand the proximity in which their population is to carrying capacithz, and hence adapt management strategies accordingly.

## Acknowledgements

We thank the following agencies, organizations, and their personnel for the tremendous amount of help they have provided. Without them this project would not be possible. We also thank the Wyoming Game and Fish Department, WGFD Habitat-Section, Wyoming Governor's Big Game License Coalition, University of Wyoming and the University of Wyoming- National Park Service Research Center for their generous funding support.


Literature Cited

- BAIGAS, P.E., R.A. OLSON, R.M. Neilson, S.N. MILLer, F.G. Lindzey. 2010. Modeling seasonal distribution and spatial range capacity of moose in southeastern Wyoming. Alces 46:89-112.
-BAIGAS, P.E., R.A. OLSON. 2008. Final report: Snowy Range moose habitat selection and riparian browse evaluation. Prepared for Wyoming Game and Fish Deparment. 1-56.
- Boertje, R.D., K.A. Kellie, C.T. Seaton, M.A. Keech, D.D. Young, B.W. Dale, L.G. Adams, A.R. Aderman. 2007. Ranking Alaska moose nutrition: signals to begin liberal anterless harvests. Journal of Wildlife Management 71(5):1494-1506.
-COOK, J.G., B.K. JOhnson, R.C. COOK, R.A. RIGGS, T. Delcurto, L.D. Bryant, L.L. IRWIn. 2004. Effects of summer-autumn nutrition and parturition date on reproduction and survival of elk. Wildlife Monographs 155:1-61.
- Henningsen, J.C., A.L. Williams, C.M. TATE, S.A. Kilpatrick, W.D.WALTER. 2012. Distribution and prevalence of Elaeophora schneideri in moose in Wyoming. Alces 48:35-44.
- Houston, D.B. 1967. The Shiras moose in Jackson Hole, Wyoming. Dissertation, University of Wyoming.
- Keigley, R.B. AND C.W. FAGER. 2006. Habitat-based adaptive management at Mount Haggin Wildlife Management Area. Alces 42:49-54.
- McArt, S.H., D.E. Spalinger, W.B. Collins, E.R. Schoen, T. Stevenson, M. Bucho. 2009. Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central Alaska. Ecology 90(5):1400-1411.
- MONFORT, S.L., C.C. SCHWARTZ, S.K. WASSER. 1993. Monitoring reproduction in captive moose using urinary and fecal steroid metabolites. Journal of Wildlife Mangement 57(2):400-407.
- MONTEITH, K.L., R.W. KLAVER, M.J. KAUFFMAN. In Prep. Effects of climate and plant phenology on recruitment of moose at the southern extent of their range.
- PARKER, K.L., P.S. BARBOZA, M.P. GILLINGHAM. 2009. Nutrition integrates environmental responses of ungulates. Functional Ecology 23:57-69.
- RENECKER, L.A. AND C.C. SCHWARTZ. 2007. Food habits and feeding behavior. In A.W. Franzmann and C.C. Schwartz (eds.), Ecology and management of the North American moose, second edition (403-440). Colorado, USA: University Press of Colorado.
-RINEY, T. 1955. Evaluating condition of free-ranging red deer (Cervus elaphus), with special reference to New Zealand. New Zealand. Journal of Science and Technology. Sect. B, 36: 429.463.
- SMith, M.A., S. KILPATRICK, B. YOUNKIN, L. WORK, D. WACHOB. 2011. Assessment of crucial moose winter habitat in western Wyoming. Alces 47:151-162.
- Stephenson, T.R., K.J Hundertmark, C.C. Schwartz, V. Van Ballenberghe. 1998. Predicting body fat and body mass in moose with ultrasongraphy.

Canadian Journal of Zoology 76:717-722.

- STEVENS, D.L. AND A.R. OLSEN. 2004. Spatially balanced sampling of natural resources. Journal of the American Statistical Association 99(465):262-278.
- VARTANIAN, J.M. 2011. Habitat condition and nutritional quality of seasonal forage and diets: demographic implications for a declining moose
population in northwest Wyoming, USA. Thesis, University of Wyoming.
- WASSER, S.K., K.E. HUNT, J.L. BROWN, K. COOPER, C.M. CROCKETT, J.J. MILLSPAUGH, S. LARSON, S.L. MONFORT. 2000. A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. General and Comparitive Endocrinology 120:260-275
- Wasser, S.K., J.C. AZKarate, R.K. Booth, L. Hayward, K. Hunt, K. Ayres, C. VFis3 ine, K. Gobush, D. Canales-Espinosa, E. Rodriguez-Luna. 2010. Non-invasive measurement of thyroid hormone in feces of a diverse array of avian and mammalian species. General and Comparative Endocrinology 168:1-7.


2013 - JCR Evaluation Form

| SPECIES: Mule Deer |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: MD534-GOSHEN RIM |  |  |
| HUNT AREAS: 15-16, 55, 57 |  | PREPARED BY: MARTIN HICKS |
| 2008-2012 Average | 2013 | 2014 Proposed |
| Population: 18,120 | 20,100 | 19,800 |
| Harvest: 772 | 678 | 1,035 |
| Hunters: 1,655 | 1,463 | 1,435 |
| Hunter Success: 47\% | 46\% | 72 \% |
| Active Licenses: 1,712 | 1,542 | 1,465 |
| Active License Percent: 45\% | 44\% | 71 \% |
| Recreation Days: 6,189 | 5,858 | 7,000 |
| Days Per Animal: 8.0 | 8.6 | 6.8 |
| Males per 100 Females 33 | 28 |  |
| Juveniles per 100 Females 62 | 58 |  |
| Population Objective: |  | 20,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | 0\% |
| Number of years population has been + or - objective in rece | end: | 7 |
| Model Date: |  | 03/04/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 1\% | 1\% |
| Males $\geq 1$ year old: | 10\% | 12\% |
| Juveniles (<1 year old): | .2\% | 0\% |
| Total: | 3\% | 3\% |
| Proposed change in post-season population: | +12\% | 0\% |

## Population Size - Postseason

$\square$ MD534-POPULATION - MD534-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ MD534 - Hunter Success \% MD534 - Active License Success


## Active Licenses



Days per Animal Harvested
$\square$ MD534 - Days


Postseason Animals per 100 Females
$\square$ MD534 - Males $\square$ MD534 - Juveniles


## 2008-2013 Postseason Classification Summary

for Mule Deer Herd MD534-GOSHEN RIM

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | $\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$ | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 17,500 | 57 | 106 | 163 | 18\% | 462 | 50\% | 299 | 32\% | 924 | 1,143 | 12 | 23 | 35 | $\pm 4$ | 65 | $\pm 6$ | 48 |
| 2009 | 18,200 | 44 | 98 | 142 | 16\% | 442 | 49\% | 311 | 35\% | 895 | 1,210 | 10 | 22 | 32 | $\pm 4$ | 70 | $\pm 7$ | 53 |
| 2010 | 18,400 | 80 | 125 | 205 | 16\% | 668 | 51\% | 440 | 34\% | 1,313 | 1,123 | 12 | 19 | 31 | $\pm 3$ | 66 | $\pm 5$ | 50 |
| 2011 | 18,700 | 116 | 226 | 342 | 17\% | 1,031 | 51\% | 665 | 33\% | 2,038 | 1,364 | 11 | 22 | 33 | $\pm 3$ | 65 | $\pm 4$ | 48 |
| 2012 | 17,800 | 121 | 192 | 313 | 18\% | 977 | 55\% | 487 | 27\% | 1,777 | 1,076 | 12 | 20 | 32 | $\pm 3$ | 50 | $\pm 3$ | 38 |
| 2013 | 20,100 | 39 | 176 | 215 | 15\% | 776 | 54\% | 451 | 31\% | 1,442 | 1,235 | 5 | 23 | 28 | $\pm 3$ | 58 | $\pm 4$ | 46 |

# 2014 HUNTING SEASONS <br> GOSHEN RIM MULE DEER HERD UNIT (MD534) 

| Hunt <br> Area | Type | Dates of Seasons <br> Opens | Closes | Quota | Limitations |
| :---: | :---: | :--- | :--- | :--- | :--- |
| 15 | Gen | Oct. 1 | Oct. 14 |  | General license; antlered mule <br> deer or any white-tailed deer. |
|  | 6 | Oct. 1 | Dec. 31 | 350 | Limited quota; doe or fawn |
| Region T |  |  | 400 |  |  |
| Archery |  | Sept. 1 | Sept. 30 |  | Refer to Section 3 of this Chapter |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 15 | 6 | +325 |
| 16 | 2 | -50 (deleted) |
| 16 | 6 | -100 (deleted) |
| 55 | 6 | -100 (deleted) |
| 57 | 6 | -75 (deleted) |
| Total | 2 | -50 |
|  | 6 | +50 |

## Management Evaluation

Current Management Objective: 20,000
Management Strategy: Recreational
2013 Post-season Population Estimate: ~20,100
2014 Post-season Population Estimate: ~19,800

## Herd Unit Issues

The management objective for the Goshen Rim Mule Deer Herd Unit was changed from 25,000 to 20,000 and Hunt Areas 15,16,55,57 were combined into Hunt Area 15 as a result of internal recommendations and public input during the 2013 herd objective review process. The management strategy is recreational management with a post-season buck ratio range of 20-29 bucks:100 does.

The 2013 post-season population estimate was approximately 20,100 mule deer with the population stable to slowly trending up. Restricted access makes it difficult to manage this herd. Access is provided by; isolated private land experiencing damage, small parcels of state, BLM lands, and private lands enrolled into the Department's PLPW program. Without paying a trespass/trophy fee or hiring an outfitter hunters have a difficult time harvesting a mature mule deer buck. Landowners and hunters would like to see an increase in mule deer, but without major habitat revitalization (for part of the year mule deer are dependent on irrigated and dryland agriculture fields) this herd unit will most likely remain between 15,000 and 20,000 mule deer. Buck ratios are anticipated to remain on the higher end of the recreational management strategy due to private land ( $92 \%$ of the occupied habitat). However, public land hunters will continue to
have a difficult time finding a mature buck due to the majority of land being held in private ownership.
Major landscape changes have been occurring in the southern portion of the herd unit. Urban sprawl continues to increase north and east of Cheyenne as well as industrial (methane production) development in Laramie County. The USDA's Conservation Reserve Program (CRP) has experienced a decline in productivity and quality of perennial forage throughout the herd unit. The conversion of dryland (wheat fields) cropland to CRP in the past provided favorable fawning and winter cover for mule deer. These stands are now monotypic stands of unfavorable perennial grass (i.e. smooth brome and crested wheatgrass) and no legume component that provide little if any habitat benefits.

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Post-season fawn ratios of $58: 100$ were $14 \%$ higher than 2012 and were slightly higher than the ten-year average of 45:100. The increase is most likely a result of mild winter conditions and above average summer/fall moisture. Ungulates went into the winter in good body condition as a result of the fall moisture. Winter conditions were somewhat mild with low snowpack but with periods of extreme cold temperatures followed by periods above freezing. A high winter mortality rate is not expected. Refer to the following websites for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and
http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality to heavily influence population management for any particular big game species. Shrub communities within the Laramie Region that are annually assessed by terrestrial habitat biologist, wildlife biologist and game wardens include: True mountain mahogany, Antelope bitterbrush, Skunkbrush sumac, Big sagebrush, and Fourwing saltbush. The majority of the transects were established approximately $12-13$ years ago. Transects were established for several different primary reasons, but may have included: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, or other. Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. Habitat monitoring protocols to improve the quality and quantity of data is being gathered. These planned changes will hopefully result in improved validity of habitat information being gathered, and may prove to be a useful tool in population management of wild ungulates.

## Field Data

This herd has been stable to slightly increasing since 2006 and is now within the new objective of 20,000 mule deer. General licenses have focused harvest on the male segment of the population with little effort to remove females. Typically there have been around 200 Type 6
licenses available between the 4 hunt areas. To address damage issues they were increased to 300 for the 2013 season. On average less than 1 percent of the harvest is comprised of females. Chronic wasting disease (CWD) is not as prevalent in this herd when compared to the Laramie Mountains Mule Deer and the South Converse Mule Deer Herd Units, but the long-term prevalence rate average of $10 \%$ is likely affecting population performance but to what extent is unknown.

Four out of the past five years the sample size has been met, lending credibility to composition data. Fawn ratios in 2013 ( 58 Fawns: 100 Does) continue to remain below levels to maintain a population. According to Unsworth et al. populations did not increase unless fawn ratios exceeding 66 fawns: 100 does. 1999). Buck ratios remain well within the recreational management range ( 28 Bucks:100 Does in 2013). However, based on personnel and hunter observation the buck ratios on accessible lands are more likely on the lower end of the management strategy. With $92 \%$ of the occupied habitat under private land ownership male mule deer have an easier time surveying to 4-5 years old. The majority of bucks harvested on public land are 1-3 years old. There were few yearling mule deer in the composition survey $(\mathrm{n}=39)$. The five-year average is 84 . The small sample size is most likely a result of poor fawn production in 2012 ( 50 fawns: 100does). Field harvest of 0 yearling bucks checked in the field also supports fewer yearling bucks in the population. The reduction in yearling male mule deer will correlate to fewer mature bucks 2-3 years from now. Hunters will be informed in future PIGMs so they can plan their hunt if they are looking to harvest a trophy buck. Antler class data was collected for the first time in 2012. There were 30 deer sampled with $50 \%$ Class I, $40 \%$ Class II and $10 \%$ Class III. In 2013 there were 20 male deer sampled and again it broke down as: $50 \%$ Class I, $40 \%$ Class II and $10 \%$ Class III with the average antler width of 19 ". Class I and II deer are typically 1-3 years old, which is consistent with observed public land male deer harvested.

The hunter satisfaction survey showed that $64 \%$ of the hunters were satisfied with their hunt, slightly down from $66 \%$ in 2012. This level of satisfaction is somewhat surprising given the negative comments received from hunters by field personnel. Hunters continue to comment on lack of mature bucks and overall lack of deer.

## Harvest Data

Hunter success (46\%) decreased compared to the ten-year average of $60 \%$ and hunter effort (8.6 days) was nearly one day more than the ten-year average of 7.7 days per harvest. Access continues to be an issue in this herd unit with $92 \%$ of the occupied habitat consisting of private land. The only major access is the PLPW's Hunter Management Program on the Guernsey Guard Camp, walk-in areas and the various Wildlife Habitat Management Areas. Access for the most part is driven by damage, which is the reason for the Type 6 license. Access for male harvest is extremely difficult unless a hunter is willing to pay a trespass fee or hire an outfitter. Private land ratios inflate overall buck ratios to the higher end of the recreational management strategy.

## Population

The "Time-Specific Juvenile and Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen to use for the post-season population estimate of this herd. The AIC value for this model was 163 which was higher than the AIC value (134) of the SCJ,SCA model. The TSJ,CA was chosen over the SCJ,SCA model for several reasons: 1) both models fit actual data with simulated data fairly well. However, based on fawn production it survival is more variable year to year, which is indicative of the TSJ, CA model, 2) Adult survival remains fairly consistent, again indicative of the TSJ, CA model, 3) There is not a field estimate of survival from a collaring or mark-recapture study, a requirement of the SCJ,SCA model, 4) The population trend
of both models indicates a increase in the populations. However, field observations of department personnel, landowners and hunters perceived perception of the population is likely closer to the estimate the TSJ, CA model ( $\sim 20,000$ mule deer). The SCJ,SCA simulates a population at 27,000 mule deer. Past estimations that directed herd management and were also presented to the public were around 17,000 mule deer. A $45 \%$ increase in the population is unrealistic given poor fawn production. For these reasons the model is rated as fair. Juvenile survival was adjusted to the range of $.6-.9$, which allowed for a better model fit based on longterm population observation trends. The larger range of juvenile survival of .4-.9 drove the population well below perceived estimations. Hunters and landowners would like to see a continued increase in the herd, but given poor fawn production, which is below the level of 66 fawns:100 does (Unsworth et al. 1999) needed for population growth combined with CWD, poor shrub conditions an increase is not likely in the near future.

## Management Summary

Hunting seasons in this herd unit have traditionally started on October 1 and run for 11 to 14 days for the general season. Limited doe fawn hunting opportunities exist in some hunt areas during November and December. Starting in 2014 there will be one hunt area (Hunt Area 15) with a general season date of October 1-14. There will be 350 doe/fawn licenses available area wide with no limitation on the license. Department personnel will work with landowners and hunters to distribute hunter access as damage issues arise. The Region T licenses are proposed to decrease from 500 to 400 . There is limited access on public lands and the reduction is warranted to decrease hunter congestion and improve success. In addition this decrease will bring license sales within the five-year average of 380 Region $T$ licenses sold. If we attain the projected harvest of 1,035 deer and observe normal fawn production the mule deer population should remain within the objective of 19,800 mule deer.

Literature cited:

Unsworth, JW, Pac DF, White GC, and Bartmann BC: Mule deer survival in Colorado, Montana, and Idaho. J. Wildl. Manage. 63(1):315-326, 1999





Mule Deer (MD534) - Goshen Rim
HA 15, 16, 55, 57
Revised-97
$+$

2013 - JCR Evaluation Form


## Population Size - Postseason

$\square$ MD537-POPULATION - MD537-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ MD537 - Hunter Success \% $\square$ MD537 - Active License Success


## Active Licenses



Days per Animal Harvested
$\square$ MD537- Days


Postseason Animals per 100 Females


## 2008-2013 Postseason Classification Summary

for Mule Deer Herd MD537-LARAMIE MOUNTAINS

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | $\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$ | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | Conf Int | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 20,300 | 101 | 335 | 436 | 21\% | 1,034 | 49\% | 623 | 30\% | 2,093 | 1,180 | 10 | 32 | 42 | $\pm 3$ | 60 | $\pm 4$ | 42 |
| 2009 | 19,600 | 155 | 395 | 550 | 19\% | 1,433 | 49\% | 952 | 32\% | 2,935 | 1,245 | 11 | 28 | 38 | $\pm 2$ | 66 | $\pm 3$ | 48 |
| 2010 | 18,900 | 205 | 425 | 630 | 19\% | 1,639 | 50\% | 1,015 | 31\% | 3,284 | 1,202 | 13 | 26 | 38 | $\pm 2$ | 62 | $\pm 3$ | 45 |
| 2011 | 16,300 | 102 | 296 | 398 | 19\% | 1,122 | 54\% | 570 | 27\% | 2,090 | 1,263 | 9 | 26 | 35 | $\pm 2$ | 51 | $\pm 3$ | 38 |
| 2012 | 15,600 | 83 | 162 | 245 | 18\% | 699 | 51\% | 415 | 31\% | 1,359 | 1,218 | 12 | 23 | 35 | $\pm 3$ | 59 | $\pm 5$ | 44 |
| 2013 | 15,800 | 23 | 173 | 196 | 19\% | 528 | 50\% | 324 | 31\% | 1,048 | 1,161 | 4 | 33 | 37 | $\pm 4$ | 61 | $\pm 5$ | 45 |

## 2014 HUNTING SEASONS LARAMIE MOUNTAINS MULE DEER HERD (MD537)

| Hunt <br> Area | Dates of Seasons |  |  |  | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type | Opens | Closes | Quota |  |
| 59,62,63 | General | Oct. 15 | Oct. 25 |  | General license; antlered mule deer or any white-tailed deer, except the Wyoming Game and Fish Commission's Tom Thorne/Beth Williams Wildlife Research Center at Sybille shall be closed |
| 62,63, 64 | 6 | Oct. 15 | Oct. 31 | 100 | Limited quota; doe or fawn, valid on private land |
|  |  | Nov. 1 | Dec. 31 |  | Unused Area 62, 63, 64 Type 6 licenses valid for doe or fawn white-tailed deer |
| 60 | 1 | Oct. 20 | Nov. 5 | 100 | Limited quota; antlered deer on national forest, any deer valid off national forest; All lands within Curt Gowdy State Park, archery only |
|  | 2 | Oct. 20 | Nov. 5 | 150 | Limited quota; any deer valid off national forest; all lands within Curt Gowdy State Park, archery only |
|  |  | Nov. 6 | Nov. 30 |  | Unused Area 60 Type 1 and Type 2 licenses valid for doe or fawn white-tailed deer valid off national forest; all lands within Curt Gowdy State Park, archery only |
|  | 6 | Oct. 20 | Nov. 30 | 50 | Limited quota; doe or; all lands within Curt Gowdy State Park, archery only |
| 64 | General | Oct. 15 | Oct. 25 |  | General license; antlered mule deer or any white-tailed deer, except the Wyoming Game and Fish Commission's Tom Thorne/Beth Williams Wildlife Habitat Management Area and the Laramie Peak Wildlife Habitat Management Area north of the Tunnel Road (Albany County Rd 727), shall be closed |
|  | 2 | Oct. 15 | Oct. 25 | 100 | Limited quota; antlered mule deer or any white-tailed deer |
| 73 | General | Oct. 15 | Oct. 25 |  | General license; antlered mule deer or any white-tailed deer |
| Archery |  | Sept. 1 | Sept. 30 |  | Refer to license type and limitations in Section 3 |

## Region J Nonresident Quota: 900

| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| $62,63,64$ | 6 | -50 |
| 60 | 1 | 0 |
| 60 | 2 | 0 |
| 60 | 6 | 0 |
| 64 | 2 | 0 |
| $59,60,62-65,73$ | Region J | -200 |
| Total | $\mathbf{1}$ | $\mathbf{0}$ |
|  | $\mathbf{2}$ | $\mathbf{0}$ |
|  | $\mathbf{6}$ | $\mathbf{- 5 0}$ |
|  | Region J |  |

## Management Evaluation

Current Post-season Population Objective: 29,000
Management Strategy: Recreational
2013 Post-season Population Estimate: ~15,800
2014 Post-season Population Estimate: ~14,700

## Herd Unit Issues

The management objective for the Laramie Mountains Mule Deer Herd Unit is a post-season population objective of 29,000 mule deer. The management strategy is a recreational management with a post-season buck ratio range of 20-29 Bucks:100 Does. The herd objective and management strategy was last revised in 2003. During the herd objective review process this winter/spring the department will recommend to the WGFD Commission a reduction of the numeric objective from 29,000 to 20,000 , which will be more in line with the current population estimate and biologically achievable within 5 years.

The 2013 post-season population estimate was about 15,800 with the population trending downward. Chronic Wasting Disease has been detected in this herd for well over two decades. The average prevalence rate since 1997 is $22 \%$, contributing towards the suppression of this herd. Management strategy has been very conservative with little doe harvest to try and increase the herd. Approximately $50 \%$ of the herd unit is private lands which affects our ability to provide opportunity.

The Arapahoe wild fire in 2012 will have habitat effects for years to come. In some areas perennial vegetation is responding. In other places the ground appears sterile with little to no vegetation growth. Mule deer have been harvested in the burned area in 2012 and 2013. Mule deer occupation in burned areas was also documented during the winter of 2013. In the long run this major fire will be a positive for ungulate habitat. It will take time to see the major re-vegetation events.

Landowners and sportsmen would like to see more mule deer. To try and address this situation the Type 6 license was reduced from 250 to 100

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Post-season fawn ratios of 61 Juveniles: 100 Females were similar to 2012 (59J:100F) and the ten-year average (62J:100F). The mild winter conditions and above average summer/fall moisture most likely prevented a significant decrease given ungulates just came out of the worst drought observed since the 1930s. Winter conditions were somewhat mild with low snowpack but with periods of extreme cold temperatures, followed by above freezing periods. High winter mortality rates are not expected. Refer to the following websites for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality to heavily influence population management for any particular big game species.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: True mountain mahogany, Antelope bitterbrush, Skunkbrush sumac, Big sagebrush, and Fourwing saltbush. The majority of the transects were established approximately $12-13$ years ago. Transects were established for several different primary reasons, but may have included: measuring habitat response prior to or following treatments (i.e.
prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, or other.

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "nonrepresentative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. Habitat monitoring protocols to improve the quality and quantity of data are being gathered. These planned changes will hopefully result in improved validity of habitat information being gathered, and may prove to be a useful tool in population management of wild ungulates.

## Field Data

Fawn ratios of 61 Fawns: 100 Does in 2013 were not at level to sustain a population. According to Unsworth et al. (1999) populations do not increase if fawn ratios are below 66 fawn: 100 does. The 2013 fawn classification data was similar to the ten-year average; a major cause contributing to the decline in population. Buck ratios of 37 Bucks: 100 Does were well within the recreational management strategy. However, finding a mature buck on public land is often difficult.

Based on the 2013 herd classification survey yearling bucks observed were significantly lower (4 yearling males: 100 females) compared to the five-year average ( 11 yearling males: 100 females). Fawn production in 2012 was 59 juveniles: 100 females so a decline in yearling males was expected in 2013. Classification sample size was met four out of the past five years. It was not met in 2013 (C.I. $=1,161, \mathrm{n}=1,048$ ), but given the majority of samples met lends credibility to composition data. Examining other field data it is interesting to find that field harvest data contradicts composition survey data. In 2013, 28\% of the male harvest was comprised yearling bucks. Compared to the fiveyear average (2007-2012, with 2010 thrown out because there was not a Wheatland Wildlife Biologist working at that time) of $13 \%$ this is significantly higher. It is hard to infer what the explanation is for the conflicting data. Perhaps the smaller sample size of 64 compared to the five-year average (again 2010 was thrown out) of 90 might have affected the ratio. The 2013 classification survey technique (air and ground) did not change compared to the past five years but the sample size was not met. The data will $t$ likely provide clarity next year through field harvest data, antler classification, and the herd classification survey.

Buck antler classification data was collected for the first time in 2012. There were 51 deer sampled with 75\% Class I, 14\% Class II and 12\% Class III. In 2013 there were 68 deer sampled with 58\% Class I, $38 \%$ Class II and $4 \%$ Class III and an average antler spread of 16 ". This supports sportsmen's comments that older age class deer were hard to find. The majority of the sampled deer were on public land where there are lower buck densities. Deer appeared to be going into the winter in good condition with a body condition score of 17 out of 20. Increased fall moisture likely increased vital fat reserves for mule deer prior to winter. The satisfaction survey showed that $61 \%$ of the hunters were satisfied, which was somewhat surprising based on negative comments received from the field that hunters were having difficulty finding mature buck.

## Harvest Data

Hunter success in 2013 (53\%) was slightly lower than the ten-year average of $57 \%$ and hunter effort was 8.3 days per harvest which was higher than the ten-year average of 7.5 days per harvest. These data support a decreasing trend in population, which also supports personnel, landowner and sportsmen observations. As a result the Type 6 licenses were decreased to try and address the decreasing population. However, given poor fawn production, CWD, and poor habitat conditions a reduction in doe/fawn licenses will not improve herd performance.

## Population

The "Time-Specific Juvenile and Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen to use for the post-season population estimate of this herd. The AIC value for the TSJ, CA model is 113, which is slightly higher than the AIC value (134) for the SCJ, SCA. This model was chosen for the following reasons: 1) The model tracks juvenile variability in survival, which is more consistent with this herd unit based on the fluctuations in juvenile composition data, 2) There is a large number of of years of classification and harvest data, indicative of the TSJ, CA model, 3) Simulated population trends mimic perceived trends observed by local personnel, landowners and hunters. This model is rated as fair. There is not a annual population estimate, with a standard error available to anchor the model to, but enough data to give the model a fair fit and results are biologically defensible. Adult survival was adjusted to $.7-.8$ instead of the recommended range of $.7-.95$ to account for chronic wasting disease prevalence rates. This herd has the second highest prevalence rate ( $24 \%$ ) in the state and adult survival rates were adjusted based on initial study results from the South Converse Mule Deer Herd Unit, which has the highest prevalence rate of $46 \%$ in 2013. Hunters and landowners would like to see an increase in mule deer, but given poor recruitment, CWD and poor habitat conditions an increase in the population does not seem likely in the near future.

## Management Summary

Hunting seasons in this herd unit have started on the $15^{\text {th }}$ of October and run between 10-15 days. Late doe/fawn seasons have been used to address damage situations in lower elevations onprivate land, but the public has overwhelmingly indicated they would like to see more mule deer. To address this concern there will be a decrease of Type 6 licenses from 250 to 100. Area 60 remains a sought after license for hunters since it gives them a chance to hunt into November when male deer are more susceptible to harvest. Region J licenses are proposed to decrease from 1,100 to 900 to address low deer densities, especially on public lands. This is a major change and was not made without careful consideration for the herd and the nonresident hunter. The reduction will be consistent with recent license sales (2012=949 and 2013=779) and should improve harvest statistics and reduce hunting pressure.. In addition increased hunter densit is an issue on public land for both residents and nonresident hunters. Field personnel are receiving more and more negative comments regarding the lack of access. There has also been a decreasing trend in harvest success and satisfaction for nonresidents. It is our hope that the reduction in Region J licenses will improve harvest success and overall satisfaction of the hunt for nonresidents.

If we attain the projected harvest of 935 mule deer ( 860 bucks, 75 does) and average fawn recruitment, the mule deer population will slightly decline and still remain well below the management objective. We predict a 2014 post-season population of about 14,700.

Literature Cited:
Unsworth, JW, Pac DF, White GC, and Bartmann BC: Mule deer survival in Colorado, Montana, and Idaho. J. Wildl. Manage. 63(1):315-326, 1999





| SPECIES: Mule Deer |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: MD539-SHEEP MOUNTAIN |  |  |
| HUNT AREAS: 61, 74-77 |  | PREPARED BY: LEE KNOX |
| 2008-2012 Average | 2013 | 2014 Proposed |
| Population: 7,103 | 5,681 | 5,611 |
| Harvest: 485 | 197 | 250 |
| Hunters: 1,844 | 1,345 | 1,300 |
| Hunter Success: 26\% | 15\% | 19\% |
| Active Licenses: 1,844 | 1,345 | 1,300 |
| Active License Percent: 26\% | 15\% | 19\% |
| Recreation Days: 9,043 | 6,816 | 5,500 |
| Days Per Animal: 18.6 | 34.6 | 22 |
| Males per 100 Females 27 | 26 |  |
| Juveniles per 100 Females 60 | 55 |  |
| Population Objective: |  | 15,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | -62.1\% |
| Number of years population has been + or - objective in rece | rend: | 15 |
| Model Date: |  | 5/12/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 0.1\% | .1\% |
| Males $\geq 1$ year old: | 6\% | 6\% |
| Juveniles (<1 year old): | 0.0\% | 0.0\% |
| Total: | 1.32\% | 1.32\% |
| Proposed change in post-season population: | 5.3\% | 0\% |

## Population Size - Postseason

$\square$ MD539 - POPULATION - MD539-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ MD539 - Hunter Success \% MD539 - Active License Success


## Active Licenses



Days per Animal Harvested
$\square$ MD539 - Days


Postseason Animals per 100 Females


| 2008-2013 Postseason Classification Summary for Mule Deer Herd MD539 - SHEEP MOUNTAIN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | males |  |  |  | females |  | Juveniles |  | $\left\lvert\, \begin{array}{cc} \text { Tot } & \mathrm{Cls} \\ \text { Cls } & \text { Obj } \end{array}\right.$ | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  | YIng | Adult | Total | Conf <br> Int | 100 Fem | Conf Int | 100 Adult |
| 2008 | 7,867 | 38 | 93 | 131 | 16\% | 441 | 54\% | 247 | 30\% | 819993 | 9 | 21 | 30 | $\pm 4$ | 56 | $\pm 5$ | 43 |
| 2009 | 8,168 | 91 | 134 | 225 | 14\% |  | 51\% | 593 | 36\% | 1,661 1,391 | 11 | 16 | 27 | $\pm 2$ | 70 | $\pm 4$ | 56 |
| 2010 | 6,908 | 63 | 63 | 126 | 15\% | 474 | 56\% | 243 | 29\% | 843840 | 13 | 13 | 27 | $\pm 3$ | 51 | $\pm 5$ | 40 |
| 2011 | 6,497 | 48 | 98 | 146 | 16\% |  | 54\% | 263 | 30\% | 889 1,087 | 10 | 20 | 30 | $\pm 3$ | 55 | $\pm 5$ | 42 |
| 2012 | 6,076 | 33 | 52 | 85 | 11\% |  | 55\% | 249 | 33\% | 7501,047 | 8 | 12 | 20 | $\pm 3$ | 60 | $\pm 6$ | 50 |
| 2013 | 5,681 | 82 |  |  |  |  |  |  | 30\% | 1,304 984 | 11 | 15 | 26 | $\pm 2$ | 55 | $\pm 4$ | 43 |

## 2014 HUNTING SEASONS

Sheep Mountain Mule Deer (MD539)

| Hunt <br> Area | Type | Date of Seasons <br> Opens <br> Closes | Quota |
| :---: | :---: | :---: | :---: |
| 61 | Oct. 1 | Oct. 7 | General license; antlered mule deer <br> three (3) points or more on either antler or any white- <br> tailed deer |
| 74 | Oct.1 | Oct. 7 | General license; antlered mule deer <br> three (3) points or more on either antler or any white- <br> tailed deer |
| 75 | Oct.1 | Oct. 7 | General license; antlered mule deer <br> three (3) points or more on either antler or any white- <br> tailed deer |
| 76 | Oct.1 Oct. 7 | General license; antlered mule deer <br> three (3) points or more on either antler or any white- <br> tailed deer |  |
| 77 | Oct.1 | Oct. 7 | General license; antlered mule deer <br> three (3) points or more on either antler or any white- <br> tailed deer |

Region D Nonresident Quota: 400

## Management Evaluation <br> Current Postseason Population Management Objective: 15,000 <br> Management Strategy: Recreational <br> 2013 Postseason population Estimate: ~ 5,700 <br> 2014 Proposed Postseason Population Estimate: ~ 5,600

The management objective for the Sheep Mountain Mule Deer Herd Unit is a post-season population objective of 15,000 mule deer. The management strategy is recreational management with guidelines to maintain a post hunt buck ratio of 20 to 29:100 does. The objective and management strategy were last revised in 1987 and will be reviewed again in 2015.

## Herd Unit Issues

The Sheep Mountain Herd Unit encompasses Hunt Areas 61, 74, 75, 76 and 77. Landownership varies from mostly private lands with limited public access, to large portions of public lands. The 2013 post-season population estimate is approximately 5,700 with the population trending
slowly downward from a high of 8,000 in 2009. The Sheep Mountain Herd Unit historically has one of the lowest hunter success rates in the state. There are many contributing factors including: low population, inaccessible private lands, and a restrictive season structure. Poor habitat conditions continue to be a limiting factor for this herd as well as an increase in rural subdivisions, and wind energy development in transition and winter ranges.

## Weather

Weather during the spring and summer of 2013 remained extremely dry. The Palmer Drought Severity Index (PDSI) ranked drought conditions in SE Wyoming as extreme through the month of August. The lack of spring moisture may have caused fawn ratios to decline from 60:100 does in 2012 to 55:100 does in 2013. We received a lot of precipitation during the fall, with September 2013 being the wettest September ever recorded in Laramie. With the second green up in September, deer were in good condition going in to the winter. For specific weather information please refer to the following link: http://www.ncdc.noaa.gov/.

## Habitat

Turnover in personnel, changes in individual job responsibilities of employees, and evolving WGFD agency priorities have resulted in some issues with consistent habitat data collection and interpretation of data. Some transects, years after their initial establishment, have been identified as being in "non-representative" locations. Site selection was often influenced by terrain and/or land ownership status (i.e public access). Changing land uses (wind turbines, roads, fence construction, other developments, etc.) have influenced habitat use by wildlife in some locations, and in some instances have resulted in major shifts in animal usage of the area being monitored. Department personnel are currently evaluating shrub transects and the types of information being collected, and will be looking for ways to improve efficiency of data collection, types of data being collected, and refining criteria for site selection for future transects. The reader is referred to the Strategic Habitat Plan Annual Report for further background information on shrub transects.

The Squirrel Creek Fire (Figure 1.) started on June $30^{\text {th }} 2012$ and burned about 11,000 acres of transitional and crucial mule deer winter range within this Herd Unit. Habitat conditions were old and decadent and we expect this fire to greatly benefit range conditions in future years. During the summer of 2013 field personal observed a high success of re-sprouting from true mountain mahogany and antelope bitterbrush. However, on steep slopes and areas that burned at higher temperatures there is substantial cheatgrass encroachment. The USFS has not finished the EIS to allow aerial application of herbicide, and until they do there is little that can be done.

## Field Data

We classified 1,304 deer within the herd unit, exciding the estimated sample size of 984 . Fawn ratios decreased from 60:100 does in 2012 to 55:100 does in 2013 which was expected with the drought conditions during the summer of 2012 through the spring of 2013. Past research shows that higher fawn ratios are needed to maintain the population. At the current 55:100 we expect the population will continue to be stable to decreasing. Antlerless harvest has been eliminated except for youth and archery hunters, who harvested 51 does and fawns in 2013, less than $1 \%$ of the total female population. Under the antler point restriction the buck ratio increased from 20:100 does in 2012 to 26:100 does in 2013, reaching the high side of recreational management.

We implemented a new ranking system in our classification that places bucks into 3 classes based on antler spread: class I is less than 19 inches, class II is 20-25 inches, and class III is greater than 25 inches. Of the total number of bucks classified, class I was made up $70 \%$, class II was $22 \%$, and class III was $9 \%$. Total active licenses decreased by 100 residents, which has been the trend with a 1,000 less resident hunters in the last decade. Nonresident hunters increased by 100 from 2012, but we hypothesize that some hunters did not realize the Platte Valley was limited quota, and the only nearby general season in early October was in the Sheep Mountain Herd Unit. With the short season and implementation of an antler point limitation, hunter effort increased by 16 days, and hunter success decreased to $15 \%$, the lowest in 10 years. This is far below the state wide average of $64 \%$ and is the lowest herd unit success rate in the state. The hunter satisfaction survey indicated that $40 \%$ of hunters were satisfied or very satisfied with their hunt with $26 \%$ remaining neutral in the survey.

## Harvest Data

2013 was the second year of a shortened season and the first year we implemented a 3 point or better antler point restriction in this herd unit. Harvest has been on a steady decline over the last decade. The 2013 harvest estimate of 200 deer is half of the harvest from 2012. The percentage of yearlings from the total number of bucks harvested decreased from $33 \%$ in 2012 to $11 \%$ in 2013, indicating that the antler point restriction saved a portion of the younger age classes. We also saw the percentage of yearling bucks compared to the total number of bucks classified increase from $38 \%$ to $45 \%$ during our post season aerial classifications. Of the estimated 197 mule deer harvested, 51 were does and fawns. Of the 51 does and fawns 43 were harvested with archery and the remaining 8 were harvested by youth. Even though the female harvest makes up $25 \%$ of the total harvest, it is less than $1 \%$ of the total female population and is not substantial enough to affect the population, but it is perceived poorly by some of the public. The 2013 season structure was mostly well received; hunters and landowners perceived it as the Department was addressing their concerns with this herd unit.

## Population

Time-Specific Juvenile \& Constant Adult Survival (TSJ, CA) spreadsheet model was chosen for this Herd Unit. This model has the lowest AIC score of 146 and a Fit of 42 and shows the population declining from a high of 8,000 in 2009 to the current estimate of 5,700 . This model is ranked as fair; there is 15-20 years of data; ratio data available for all years in model; juvenile and adult survival estimate with standard errors obtained from adjacent or other similar herds; model aligns fairly well. From our coordination meeting with Colorado we were able to get several years of fawn and adult survival rates from radio collared studies that took place near the Wyoming border. With this information the model provides a more believable estimate considering the classification samples and fawn ratios. Field staff, landowners, and hunters all agree we are well below the objective of 15,000 deer and the herd should be managed conservatively.

## Management summary

If we attain the projected harvest of 250 deer and maintain a fawn ratio of 65:100 does or higher, the herd should remain stable. Using the five year average for the fawn ratio, we predict a 2014 post-season population of about 5,600 . The 2014 season will be 7 days with a 3 point or better antler restriction to maintain higher buck ratios and address public concerns. We feel the 3 point
or better limitation is restrictive enough without a short season, but the majority of the public did not want more than a week long season. The nonresident quota for region D was decreased to 400 licenses to address the declining populations in the region D herd units and the platte valley limited quota hunt areas.


Figure. 1 Squirrel Creek Fire Perimeter with Sheep Mountain Mule Deer crucial winter range.




2013 - JCR Evaluation Form

| SPECIES: Mule Deer |  |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: | :---: |
| HERD: MD540-SHIRLEY MOUNTAIN |  |  |  |
| HUNT AREAS: 70 |  |  | PREPARED BY: WILL SCHULTZ |
|  | 2008-2012 Average | 2013 | 2014 Proposed |
| Population: | 6,905 | 5,798 | 6,049 |
| Harvest: | 395 | 159 | 280 |
| Hunters: | 809 | 508 | 650 |
| Hunter Success: | 49\% | 31\% | 43 \% |
| Active Licenses: | 827 | 516 | 660 |
| Active License Percent: | 48\% | 31\% | 42 \% |
| Recreation Days: | 3,289 | 1,851 | 2,800 |
| Days Per Animal: | 8.3 | 11.6 | 10 |
| Males per 100 Females | 30 | 24 |  |
| Juveniles per 100 Females | 61 | 42 |  |
| Population Objective: |  |  | 10,000 |
| Management Strategy: |  |  | Recreational |
| Percent population is above (+) or below (-) objective: |  |  | -42.0\% |
| Number of years population has been + or - objective in recent trend: |  |  | 20 |
| Model Date: |  |  | 03/04/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |  |
|  |  | JCR Year | Proposed |
|  | Females $\geq 1$ year old: | 0.7\% | 0.8\% |
|  | Males $\geq 1$ year old: | 15.0\% | 22.7\% |
|  | Juveniles (<1 year old): | 0.02\% | 0.2\% |
|  | Total: | 3.4\% | 4.4\% |
| Proposed ch | in post-season population: | -3.7\% | -4.9\% |

Population Size - Postseason
$\square$ MD540-POPULATION - MD540-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ MD540 - Hunter Success \% $\square=\frac{\text { MD540 - Active License Success }}{\square}$


## Active Licenses



Days per Animal Harvested
$\square$ MD540 - Days


Postseason Animals per 100 Females


2008-2013 Postseason Classification Summary
for Mule Deer Herd MD540-SHIRLEY MOUNTAIN

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | $\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$ | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$ | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 5,900 | 26 | 60 | 86 | 17\% | 276 | 53\% | 159 | 31\% | 521 | 963 | 9 | 22 | 31 | $\pm 5$ | 58 | $\pm 7$ | 44 |
| 2009 | 6,100 | 10 | 38 | 48 | 11\% | 216 | 51\% | 157 | 37\% | 421 | 913 | 5 | 18 | 22 | $\pm 4$ | 73 | $\pm 9$ | 59 |
| 2010 | 7,100 | 24 | 18 | 42 | 12\% | 190 | 54\% | 122 | 34\% | 354 | 958 | 13 | 9 | 22 | $\pm 5$ | 64 | $\pm 9$ | 53 |
| 2011 | 7,500 | 29 | 37 | 66 | 20\% | 162 | 50\% | 94 | 29\% | 322 | 1,079 | 18 | 23 | 41 | $\pm 7$ | 58 | $\pm 9$ | 41 |
| 2012 | 7,926 | 16 | 39 | 55 | 20\% | 149 | 54\% | 70 | 26\% | 274 | 1,033 | 11 | 26 | 37 | $\pm 7$ | 47 | $\pm 9$ | 34 |
| 2013 | 5,798 | 26 | 32 | 58 | 14\% | 246 | 60\% | 103 | 25\% | 407 | 997 | 11 | 13 | 24 | $\pm 4$ | 42 | $\pm 6$ | 34 |

# Shirley Mountain Mule Deer (MD540) <br> Hunt Area 70 <br> 2014 Hunting Seasons 



| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| Herd Unit Total |  | none |

## Management Evaluation <br> Current Management Objective: $\mathbf{1 0 , 0 0 0}$ <br> Management Strategy: Recreational <br> 2013 Postseason Population Estimate: 5,800 <br> 2014 Proposed Postseason Population Estimate: 6,000

Mule deer in the Shirley Mountain herd unit are managed toward a numeric objective of 10,000 . The population was estimated using a spreadsheet model developed in 2012 and update in 2014. The herd is managed for recreation opportunity. The objective was last reviewed in 1987.

## Herd Unit Issues

The Shirley Mountain herd unit is comprised of a mixture of habitat and landownership types. Hunter access to public lands containing mule deer habitat is considered good. Small groups of mule deer are considered nuisances and create damage in a localized area on the west side of Shirley Mountain, along Lost and Sage Creeks. Trends in mule deer numbers are in decline while interest from both residents and nonresidents in hunting in this herd unit have increased over the past 5 years. Expansion of wind farms in the eastern half of this herd unit is imminent.

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on mule deer. For specific meteorological information for the Shirley Mountain herd unit the reviewer is referred to the following link: http://www.ncdc.noaa.gov/cag/

## Habitat

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No mule deer habitat production/utilization data was available for this herd unit. However, annual production rates should have improved from the previous year, while utilization rates on winter ranges likely continued to be high.

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality and consequently heavily influence population management for any particular big game specie.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: true mountain mahogany, antelope bitterbrush, skunkbrush sumac, big sagebrush, and four-wing saltbush. A majority of these transects were established approximately $12-13$ years ago. Transects were established for several different reasons, including: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, and to compare present results with historic data sets.

## Field Data

The 2013 postseason classification ground survey was completed in late November. An adequate classification sample size of 407 mule deer was required to achieve an $80 \%$ confidence interval for the ratio estimates. The sample size ( $\mathrm{n}=407$ ) was the greatest recorded since 2009, yet fell below the adequate sample size goal. Yearling ratios were the same as in 2012 at 11 yearling bucks: 100 does. This was lower than was anticipated given the implementation of the 3-point or more on either antler limitation in 2013. However, 2012 fawn ratios were poor and thus may have contributed to no increase in the observed yearling ratio. Adult bucks ratios declined from 26 in 2012 to 13 in 2013, indicating harvest pressure was greatly shifted to this segment of the deer population. Fawn ratios once again declined as they had done in 2012, reaching 42 fawns:100 does, which was lower than any ratio observed during the past 25 years.

## Harvest Data

A significant change for the 2013 season was the addition of a 3-points or better limitation for the herd unit. Season lengths had been incrementally reduced over the past several years to protect overall buck numbers. The antler point restriction was implemented as an additional protection specifically for yearling bucks. The final 2013 WGFD deer harvest survey report indicated 500 general licensed hunters' harvested 150 mule deer for an overall success rate of $30 \%$. General license buck harvest decreased $51 \%$ and general license hunter numbers decreased $29 \%$, compared to the 2012 season.

In addition to decreasing total buck harvest rates, the antler point restriction likely contributed to the decrease in hunter numbers. An increase in the number of unsuccessful hunter corresponded with an increase in the portion of hunters who were dissatisfied with their overall hunting experience. The harvest survey reported satisfaction ratings of satisfied or very satisfied dropping from $58 \%$ in 2012 , to $41 \%$ in 2013.

## Population

In 2013 we selected to use the SCJ,SCA model. Although the SCJ,SCA model can be made into a more complicated model than the other 2 models in the Wyoming Spreadsheet Model suite, we limited the optimizing cells to 9 cells. Cell optimization for fawn and adult survival rates was allowed in order to assist in simulating the likely lower than normal survival rates due to severe winter weather during those particular years selected in the model. It produced the lowest AICc score but the population estimate was still considered suspect by managers.

Given the openness of the landscape, and well defined herd unit boundaries, we believed observed harvest rates and classification sample sizes were not representative for an estimated population of this size. We believe the true population size to be lower than the estimate produced by the spreadsheet model. The observed trend in mule deer abundance and harvest does not support population dynamics depicted in the models. Without other information (e.g. an independent population estimate or survival data) to incorporate into the model, accuracy of estimates will continue to be unknown.

We rated this model as poor, and not biologically defensible. This rating was based on criteria identified in the user's guide for the WGFD spreadsheet model, and primarily due to less than adequate sample sizes for postseason classification counts (Morrison 2012).

## Management Summary

The 2014 hunting season will include 7-days of General licensed antlered mule deer, 3 points or more on either antler, or any white-tailed deer hunting. The point restriction will provide protection for yearling mule deer bucks. Type 6 , private land doe or fawn licenses were prescribed to reduce damage and nuisance deer issues in the Lost and Sage Creek area.

The Region D quota was reduced to bring hunter opportunity in line with the current mule deer resource. This will also improve hunter satisfaction for both nonresidents and resident hunters alike.

## Literature Cited

Morrison, T. 2012. User Guide: Spreadsheet Model for Ungulate Population data. Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie. USA. 41 pp .

Bibliography of Herd Specific Studies
McDaniel G. W., F. G. Lindzey. 1991. Seasonal Movements, Population Characteristics and Habitat Use of Mule Deer in the Shirley Mountain Area, Central Wyoming. Wyoming Cooperative Fishery and Wildlife Research Unit. University of Wyoming, Laramie. 64 pp .

Strickland, D., L.L. McDonald, G. Johnson, and J. Kern. 1992. An Evaluation of Mule Deer Classifications From Helicopter and Ground Surveys. Western Ecosystems Technology, Inc. Cheyenne. 37pp.

| INPUT |  |
| :--- | :--- |
| Species: | MULE DEER |
| Biologist: | SCHULTZ |
| Herd Unit \& No.: | $\begin{array}{l}\text { SHIRLEY MTN 540 } \\ \text { Model date: }\end{array}$ |


|  | Unit \& No.: date: | $\begin{aligned} & \text { SHIRLEY MTN } 540 \\ & \text { 03/04/14 } \end{aligned}$ |  |  |  |  |  |  | $\square$ dear form |  |  |  | MODEL EVALUATION: | POOR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MODELS SUMMARY |  |  |  |  |  |  | Fit | Relative AICc | Check best mod to create repor |  |  |  | Notes |  |
| CJ,CA |  | Constant Juvenile \& Adult Survival |  |  |  |  | 89 | 98 | g,Ca Model |  |  |  |  |  |
| SCJ,SCA |  | Semi-Constant Juvenile \& Semi-Constant Adult Survival |  |  |  |  | 68 | 91 | Sq,SCA Mod | $\mathrm{K}=9$ |  |  |  |  |
| TSJ,CA |  | Time-Specific Juvenile \& Constant Adult Survival |  |  |  |  | 37 | 148 | $\square$ TS, ca mode |  |  |  |  |  |
| Population Estimates from Top Model |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Year | Posthunt P | opulation Est. | Trend Count | Predic | ed Prehunt Po | lation | Total | Predict | d Posthunt Popul |  | Total | Objective |  |  |
| Year | Field Est | Field SE | Trend Count | Juveniles | Total Males | Females | Total | Juveniles | Total Males | Females | Total | Objective |  |  |
| 1993 |  |  |  | 603 | 1078 | 2437 | 4118 | 552 | 518 | 1838 | 2908 | 10000 |  |  |
| 1994 |  |  |  | 950 | 613 | 1788 | 3351 | 950 | 288 | 1788 | 3027 | 10000 |  |  |
| 1995 |  |  |  | 1401 | 518 | 1854 | 3773 | 1401 | 292 | 1854 | 3547 | 10000 |  |  |
| 1996 |  |  |  | 1421 | 645 | 2036 | 4102 | 1421 | 395 | 2036 | 3853 | 10000 |  |  |
| 1997 |  |  |  | 1287 | 743 | 2204 | 4234 | 1287 | 569 | 2204 | 4060 | 10000 |  |  |
| 1998 |  |  |  | 1515 | 861 | 2317 | 4692 | 1515 | 655 | 2317 | 4487 | 10000 |  |  |
| 1999 |  |  |  | 1480 | 1000 | 2480 | 4959 | 1480 | 619 | 2480 | 4578 | 10000 |  |  |
| 2000 |  |  |  | 1603 | 958 | 2615 | 5177 | 1603 | 628 | 2615 | 4847 | 10000 |  |  |
| 2001 |  |  |  | 1411 | 1000 | 2770 | 5181 | 1411 | 632 | 2770 | 4813 | 10000 |  |  |
| 2002 |  |  |  | 1942 | 951 | 2855 | 5748 | 1942 | 636 | 2855 | 5433 | 10000 |  |  |
| 2003 |  |  |  | 2015 | 1101 | 3076 | 6192 | 2015 | 753 | 3076 | 5845 | 10000 |  |  |
| 2004 |  |  |  | 2206 | 1225 | 3294 | 6725 | 2206 | 926 | 3294 | 6425 | 10000 |  |  |
| 2005 |  |  |  | 1644 | 1431 | 3540 | 6615 | 1642 | 1058 | 3511 | 6211 | 10000 |  |  |
| 2006 |  |  |  | 1931 | 1394 | 3578 | 6904 | 1928 | 989 | 3530 | 6447 | 10000 |  |  |
| 2007 |  |  |  | 2116 | 1413 | 3682 | 7211 | 2111 | 851 | 3622 | 6585 | 10000 |  |  |
| 2008 |  |  |  | 1860 | 1207 | 3285 | 6352 | 1851 | 825 | 3212 | 5888 | 10000 |  |  |
| 2009 |  |  |  | 2417 | 1244 | 3370 | 7030 | 2415 | 804 | 3322 | 6541 | 10000 |  |  |
| 2010 |  |  |  | 2313 | 1380 | 3623 | 7316 | 2313 | 900 | 3603 | 6816 | 10000 |  |  |
| 2011 |  |  |  | 1834 | 1143 | 3171 | 6148 | 1833 | 768 | 3158 | 5759 | 10000 |  |  |
| 2012 |  |  |  | 1556 | 1188 | 3317 | 6061 | 1553 | 868 | 3306 | 5727 | 10000 |  |  |
| 2013 |  |  |  | 1402 | 1200 | 3371 | 5973 | 1402 | 1047 | 3349 | 5798 | 10000 |  |  |
| 2014 |  |  |  | 1882 | 1213 | 3263 | 6357 | 1876 | 938 | 3235 | 6049 | 10000 |  |  |
| 2015 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2016 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2017 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2018 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2019 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2020 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2021 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2022 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2023 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2024 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |
| 2025 |  |  |  |  |  |  |  |  |  |  |  | 10000 |  |  |





Comments:

The SCJ,SCA model produced the lowest AICc score. We assume the true population size to be lower than those produced by these models.


2013 - JCR Evaluation Form

| SPECIES: Mule Deer |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: MD541-PLATTE VALLEY |  |  |
| HUNT AREAS: 78-81, 83, 161 |  | PREPARED BY: WILL SCHULTZ |
| 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: 12,370 | 8,672 | 7,989 |
| Harvest: 861 | 391 | 391 |
| Hunters: 2,936 | 879 | 850 |
| Hunter Success: 29\% | 44\% | 46\% |
| Active Licenses: 2,998 | 879 | 850 |
| Active License Percent: 29\% | 44\% | 46\% |
| Recreation Days: 15,921 | 4,931 | 4,900 |
| Days Per Animal: 18.5 | 12.6 | 12.5 |
| Males per 100 Females 27 | 32 |  |
| Juveniles per 100 Females 55 | 52 |  |
| Population Objective: |  | 20,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | -56.6\% |
| Number of years population has been + or - objective in rece | nd: | 19 |
| Model Date: |  | 05/22/2014 |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | 0.7\% | 0.1\% |
| Males $\geq 1$ year old: | 23.1\% | 26.4\% |
| Juveniles (<1 year old): | 0.2\% | 0\% |
| Total: | 4.3\% | 4.6\% |
| Proposed change in post-season population: | -4.8\% | -5.1\% |

Population Size - Postseason


## Harvest



Number of Hunters


Harvest Success
$\square$ MD541-Hunter Success \% $\square \begin{aligned} & \text { MD541 - Active License Success } \\ & \%\end{aligned}$


## Active Licenses



Days per Animal Harvested
$\square$ MD541 - Days


Postseason Animals per 100 Females


2008-2013 Postseason Classification Summary
for Mule Deer Herd MD541-PLATTE VALLEY

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | Tot Cls | Cls <br> Obj | Males to $\mathbf{1 0 0}$ Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{aligned} & 100 \\ & \text { Adult } \end{aligned}$ |
| 2008 | 13,200 | 199 | 386 | 585 | 17\% | 1,928 | 55\% | 1,003 | 29\% | 3,516 | 1,020 | 10 | 20 | 30 | $\pm 2$ | 52 | $\pm 2$ | 40 |
| 2009 | 14,400 | 65 | 207 | 272 | 13\% | 1,047 | 52\% | 700 | 35\% | 2,019 | 1,053 | 6 | 20 | 26 | $\pm 2$ | 67 | $\pm 4$ | 53 |
| 2010 | 12,700 | 111 | 222 | 333 | 14\% | 1,265 | 55\% | 701 | 30\% | 2,299 | 1,094 | 9 | 18 | 26 | $\pm 2$ | 55 | $\pm 3$ | 44 |
| 2011 | 11,100 | 114 | 340 | 454 | 15\% | 1,738 | 57\% | 865 | 28\% | 3,057 | 999 | 7 | 20 | 26 | $\pm 2$ | 50 | $\pm 2$ | 39 |
| 2012 | 10,450 | 70 | 143 | 213 | 15\% | 794 | 55\% | 438 | 30\% | 1,445 | 980 | 9 | 18 | 27 | $\pm 2$ | 55 | $\pm 4$ | 43 |
| 2013 | 8,672 | 136 | 209 | 345 | 17\% | 1,092 | 55\% | 565 | 28\% | 2,002 | 937 | 12 | 19 | 32 | $\pm 2$ | 52 | $\pm 3$ | 39 |

## Platte Valley Mule Deer (MD541)

Hunt Areas 78-81, 83 \& 161
2014 Hunting Seasons

| Hunt Area | Type | Dates of Seasons |  | Limited <br> Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Opens | Closes |  |  |
| 78 | 1 | Oct. 1 | Oct. 14 | 300 | Limited quota licenses; antlered mule deer or any white-tailed deer |
| 79 | 1 | Oct. 1 | Oct. 14 | 300 | Limited quota licenses; antlered mule deer or any white-tailed deer |
| 80, 83 | 1 | Oct. 1 | Oct. 14 | 200 | Limited quota licenses; antlered mule deer or any white-tailed deer |
| 81 | 1 | Oct. 1 | Oct. 14 | 200 | Limited quota licenses; antlered mule deer or any white-tailed deer |
| 161 | 1 | Oct. 1 | Oct. 14 | 25 | Limited quota licenses; antlered mule deer or any white-tailed deer |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 161 | 1 | -25 |
| Herd Unit Total | $\mathbf{1}$ | $\mathbf{- 2 5}$ |

## Management Evaluation

Current Management Objective: 20,000
Management Strategy: Recreational
2013 Postseason Population Estimate: 8,700
2014 Proposed Postseason Population Estimate: 8,000
Mule deer in the Platte Valley herd unit are managed toward a numeric objective of 20,000. The population was estimated using a spreadsheet model developed in 2013 and updated in 2014. The herd is managed for recreational opportunity. The objective was last reviewed in 1987 and will be reviewed in 2014.

## Herd Unit Issues

Fieldwork for several projects initiated under the Platte Valley Mule Deer Initiative (PVMDI) was completed during this past year. The monitoring of 70 radio-collared mule deer ended with the last radio-collars being retrieved for downloading in February of 2014. The University of Wyoming Cooperative Unit began analyzing data from the

Platte Valley sightability survey evaluation trials. A March meeting was held in Saratoga to update the public regarding PVMDI Mule Deer Plan progress and accomplishments.

In the June of 2013, Wyoming Game and Fish Department and the Platte Valley Habitat Partnership finalized their Mule Deer Habitat Management Plan. This multi-stakeholder partnership was tasked with identifying mule deer habitat improvement needs in the herd unit and collectively developing projects to address those needs. In November, the Wyoming Game and Fish Commission (WGFC) allocated $\$ 95 \mathrm{~K}$ from the $\$ 500 \mathrm{~K}$ Platte Valley Habitat Partnership budget to be used as matching funds toward these mule deer habitat improvement projects.

Efforts to reduce predators of mule deer in the Platte Valley were implemented during this period. Carbon County Predator Management District began a 3-year coyote removal project (Appendix A). The WGFC approved increases to both mountain lion and black bear seasons mortality limits and season lengths.

## Weather

Weather in this herd unit was relatively normal during the past bio-year. This weather pattern most likely had a neutral to positive influence on mule deer. For specific meteorological information for the Platte Valley herd unit the reviewer is referred to the following link:
http://www.ncdc.noaa.gov/cag/

## Habitat

Habitat conditions improved in 2013 with an increase in timely spring and fall precipitation. However, much of the transition and winter ranges were severely impacted by the drought conditions experienced in bio-year 2012. No mule deer habitat production/utilization data was available for this herd unit. However, annual production rates should have improved from the previous year, while utilization rates on winter ranges likely continued to be high.

The limited number of habitat transects that have been established throughout the Laramie Region have not provided sufficient data to make reliable assumptions of habitat quantity or quality and consequently heavily influence population management for any particular big game specie.

Shrub communities within the Laramie Region that are annually assessed by game wardens, wildlife biologists, and terrestrial habitat biologists, include: true mountain mahogany, antelope bitterbrush, skunkbrush sumac, big sagebrush, and four-wing saltbush. A majority of these transects were established approximately $12-13$ years ago. Transects were established for several different reasons, including: measuring habitat response prior to or following treatments (i.e. prescribed fire, wildfire, mowing), concern over historic or current domestic livestock or wild ungulate utilization levels, selection of "representative habitats" utilized by wildlife on identified winter ranges, and to compare present results with historic data sets.

## Field Data

The 2013 Platte Valley Herd Unit postseason classification ratios were 32 bucks and 52 fawns/ 100 does; based on an adequate sample of 2,002 mule deer. The buck ratio increased $16 \%$ in 2013. The observed fawn ratio at 52 fawns $/ 100$ does was $7 \%$ lower than the previous year. It was hypothesized that does went into the 2012-2013 winter in very poor body condition following the 2012 drought, resulting in decreased birth rates and decreased fawn survival in 2013.

## Harvest Data

Mule deer hunting seasons in the Platte Valley were administered entirely by limited quota licenses in 2013. Each hunt area was prescribed an area specific license quota. These quotas were formulated based on past harvest success and a PVMDI Mule Deer Plan goal of attaining a $40 \%$ harvest success rate for the herd unit in 2013. A total of 1,050 licenses were issued (Table 1). Total harvest success increased to $44 \%$ in 2013 with 388 bucks being harvested. This harvest rate was attributed to an increased season length, removal of the 20123 -point or more antler point limitation, and perhaps most important, alignment of hunter numbers with the current mule deer resource. An increase in the harvest success rate resulted in an increase in the number hunters who were either satisfied, or very satisfied. Hunter satisfaction increased from $46 \%$ in 2012, to $57 \%$ in 2013.

2013 Harvest of yearling bucks did not increase significantly with the removal of the 2012 antler point restriction (Figure 1). Field checked harvest data from past years indicated on average greater than $25 \%$ of the buck harvest consisted of yearling bucks. The 2012 antler point restrictions resulted in lowering the yearling percentage to $5 \%$ of the total buck harvest. The 2013 limited quoted seasons, with no antler point restrictions, resulted in an additional $7 \%$ increase to $12 \%$ of yearling bucks in the buck harvest. Only 3 antlerless mule deer were reported harvested in the Platte Valley.

Table 1. 2013 Platte Valley mule deer herd unit harvest information form the WGFD harvest survey, Wyoming.

MULE DEER 2013 HARVEST, HUNTING PRESSURE, HUNTER SUCCESS BY HUNT AREA

| AREA |  | TYPE | ACTIVE LICS/HTRS | HARVEST |  |  |  | HUNTER SUCCESS | DAYSI HARVEST | HUNTER DAYS | LICENSES SOLD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BUCK |  | DOE | FAWN | TOTAL |  |  |  |  |
| 78 | French Creek |  | Type 1 | 244 | 108 | 0 | 0 | 108 | 44.3\% | 10.1 | 1096 | 298 |
|  | Pooled Total |  | 244 | 108 | 0 | 0 | 108 | 44.3\% | 10.1 | 1096 |  |
|  | Pooled Resident |  | 201 | 81 | 0 | 0 | 81 | 40.3\% | 11.1 | 901 |  |
|  | Pooled Nonresident |  | 43 | 27 | 0 | 0 | 27 | 62.8\% | 7.2 | 195 |  |
| 79 | Kennaday Peak | Type 1 | 247 | 107 | 0 | 0 | 107 | 43.3\% | 13.7 | 1466 | 299 |
|  | Pooled Total |  | 247 | 107 | 0 | 0 | 107 | 43.3\% | 13.7 | 1466 |  |
|  | Pooled Resident |  | 146 | 49 | 0 | 0 | 49 | 33.6\% | 19.6 | 960 |  |
|  | Pooled Nonresident |  | 101 | 58 | 0 | 0 | 58 | 57.4\% | 8.7 | 506 |  |
| 80 | Spring Creek | Type 1 | 172 | 69 | 0 | 0 | 69 | 40.1\% | 15.7 | 1083 | 197 |
|  | Pooled Total |  | 172 | 69 | 0 | 0 | 69 | 40.1\% | 15.7 | 1083 |  |
|  | Pooled Resident |  | 101 | 33 | 0 | 0 | 33 | 32.7\% | 23.0 | 759 |  |
|  | Pooled Nonresident |  | 71 | 36 | 0 | 0 | 36 | 50.7\% | 9.0 | 324 |  |
| 81 | Blackhall | Type 1 | 176 | 73 | 3 | 0 | 76 | 43.2\% | 14.8 | 1128 | 199 |
|  | Pooled Total |  | 176 | 73 | 3 | 0 | 76 | 43.2\% | 14.8 | 1128 |  |
|  | Pooled Resident |  | 138 | 52 | 3 | 0 | 55 | 39.9\% | 17.6 | 967 |  |
|  | Pooled Nonresident |  | 38 | 21 | 0 | 0 | 21 | 55.3\% | 7.7 | 161 |  |
| 83 | Bolten Rim | Type 1 | 16 | 2 | 0 | 0 | 2 | 12.5\% | 21.5 | 43 | 197 |
|  | Pooled Total |  | 16 | 2 | 0 | 0 | 2 | 12.5\% | 21.5 | 43 |  |
|  | Pooled Resident |  | 3 | 0 | 0 | 0 | 0 | 0.0\% | 0.0 | 16 |  |
|  | Pooled Nonresident |  | 13 | 2 | 0 | 0 | 2 | 15.4\% | 13.5 | 27 |  |
| 161 | St. Mary's Creek | Type 1 | 39 | 29 | 0 | 0 | 29 | 74.4\% | 4.0 | 115 | 50 |
|  | Pooled Total |  | 39 | 29 | 0 | 0 | 29 | 74.4\% | 4.0 | 115 |  |
|  | Pooled Resident |  | 33 | 23 | 0 | 0 | 23 | 69.7\% | 4.3 | 100 |  |
|  | Pooled Nonresident |  | 6 | 6 | 0 | 0 | 6 | 100.0\% | 2.5 | 15 |  |

MULE DEER 2013 HARVEST BY HERD UNIT

| HERD |  | TYPE | ACTIVE LICS/HTRS | HARVEST |  |  |  | HUNTER SUCCESS | DAYSI HARVEST | HUNTER DAYS | LICENSES SOLD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | BUCK |  | DOE | FAWN | TOTAL |  |  |  |  |
| 541 Platte Valley |  |  | Type 1 | 879 | 388 | 3 | 0 | 391 | 44.5\% | 12.6 | 4931 | 1,043 |
|  | Total Hunters |  | 879 | 388 | 3 | 0 | 391 | 44.5\% | 12.6 | 4931 |  |
|  | Resident |  | 618 | 238 | 3 | 0 | 241 | 39.0\% | 15.4 | 3703 |  |
|  | Nonresident |  | 261 | 150 | 0 | 0 | 150 | 57.5\% | 8.2 | 1228 |  |

Figure 1. 2004-2013 Percentage of yearling bucks in the total mule deer buck harvest checked in the field. Platte Valley herd unit, Wyoming.


## Population

We continued to use the TSJ,CA spreadsheet model in 2013. This model provided the balance of allowing juvenile survival rates to be optimized for alignment with observed population dynamics, while maintaining a constant survival rate for adult mule deer in model simulations. The TSJ,CA model also offered the best AICc score of the suite of spreadsheet models. TSJ,CA model aligned very well with 3 abundance estimates for this herd unit and will provide for an excellent "anchor" for future model development. Adult survival rates for 2011 and 2012 were developed from a sample of 70 radiocollared mule deer in this herd unit and included in the model.

We rated this model as fair, and biologically defensible in our evaluation. This rating was based on criteria identified in the user's guide for the WGFD spreadsheet model (Morrison 2012).

## Management Summary

In 2014, the limited quota licenses numbers will remain similar to the 2013 quotas. A small reduction in licenses was prescribed for Hunt Area 161 due to decreasing public access. We believe limited quota hunting seasons will continue to gain support from the public in 2014. Predator management and habitat improvement projects will continue as means to improve and sustain mule deer and their habitat in the Platte Valley herd unit.

## Literature Cited

Morrison, T. 2012. User Guide: Spreadsheet Model for Ungulate Population data Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie. USA. 41 pp.

## Bibliography of Herd Specific Studies

Newman, J. 1968. Deer Distribution and Movement Studies. Final Report. Wyoming Game and Fish Department, Cheyenne.

Strickland, M. D. 1975. An investigation of the factors affecting the management of a migratory mule deer herd in southeastern Wyoming - the Snowy Range. Ph.D. Dissertation, University of Wyoming, Laramie. 171 pp.

Yost, J. 2009. North Park Deer Movement and Distribution Study Update - March, 2009. Colorado Division of Wildlife, Steamboat Springs. 4 pp.

Wyoming Game and Fish Dept. 2012. 2012 v. 110512 Platte Valley Mule Deer Plan. Wyoming Game and Fish Department, Cheyenne. 90 pp.

Wyoming Game and Fish Dept. 2013. Platte Valley Habitat Partnership's (PVHP) Mule Deer Habitat Plan, May 22, 2013. Wyoming Game and Fish Department, Cheyenne. 99 pp.






sヨyn૭la



Mule Deer (MD541) - Platte Valley HA 78-81, 83, 161
Revised-12/87


2013 - JCR Evaluation Form

| SPECIES: White tailed Deer |  | PERIOD: 6/1/2013-5/31/2014 |
| :---: | :---: | :---: |
| HERD: WD504-SOUTHEAST WYOMING |  |  |
| HUNT AREAS: 16, 55, 57, 59-64, 70, 73-81, 83, 161 |  | PREPARED BY: MARTIN HICKS |
| 2008-2012 Average | $\underline{2013}$ | 2014 Proposed |
| Population: 0 | N/A | N/A |
| Harvest: 708 | 722 | 800 |
| Hunters: 1,962 | 1,792 | 1,925 |
| Hunter Success: 36\% | 40\% | 42 \% |
| Active Licenses: 2,102 | 2,014 | 2,125 |
| Active License Percent: 34\% | 36\% | 38 \% |
| Recreation Days: 7,575 | 7,711 | 7,900 |
| Days Per Animal: 10.7 | 10.7 | 9.9 |
| Males per 100 Females 42 | 32 |  |
| Juveniles per 100 Females 67 | 62 |  |
| Population Objective: |  | 4,000 |
| Management Strategy: |  | Recreational |
| Percent population is above (+) or below (-) objective: |  | N/A\% |
| Number of years population has been + or - objective in rece | nd: | 0 |
| Model Date: |  | None |
| Proposed harvest rates (percent of pre-season estimate for each sex/age group): |  |  |
|  | JCR Year | Proposed |
| Females $\geq 1$ year old: | NA\% | NA\% |
| Males $\geq 1$ year old: | NA\% | NA\% |
| Juveniles (<1 year old): | NA\% | NA\% |
| Total: | NA\% | NA\% |
| Proposed change in post-season population: | NA\% | NA\% |

## Population Size - Postseason

$\square$ WD504-POPULATION - WD504-OBJECTIVE


## Harvest



Number of Hunters


Harvest Success
$\square$ WD504 - Hunter Success \% WD504 - Active License Success


## Active Licenses



Days per Animal Harvested
$\square$ WD504 - Days


Postseason Animals per 100 Females

for White tailed Deer Herd WD504-SOUTHEAST WYOMING

|  |  | MALES |  |  |  | FEMALES |  | JUVENILES |  | $\begin{aligned} & \text { Tot } \\ & \text { Cls } \end{aligned}$ | Cls <br> Obj | Males to 100 Females |  |  |  | Young to |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Post Pop | Ylg | Adult | Total | \% | Total | \% | Total | \% |  |  | Ylng | Adult | Total | $\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$ | $\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$ | $\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$ | $\begin{gathered} 100 \\ \text { Adult } \end{gathered}$ |
| 2008 | 0 | 65 | 105 | 170 | 23\% | 351 | 47\% | 224 | 30\% | 745 | 0 | 19 | 30 | 48 | $\pm 0$ | 64 | $\pm 0$ | 43 |
| 2009 | 0 | 50 | 96 | 146 | 19\% | 358 | 47\% | 257 | 34\% | 761 | 0 | 14 | 27 | 41 | $\pm 0$ | 72 | $\pm 0$ | 51 |
| 2010 | 0 | 38 | 72 | 110 | 20\% | 265 | 47\% | 183 | 33\% | 558 | 1,165 | 14 | 27 | 42 | $\pm 0$ | 69 | $\pm 0$ | 49 |
| 2011 | 0 | 54 | 148 | 202 | 19\% | 497 | 47\% | 367 | 34\% | 1,066 | 1,070 | 11 | 30 | 41 | $\pm 0$ | 74 | $\pm 0$ | 53 |
| 2012 | 0 | 38 | 93 | 131 | 21\% | 324 | 51\% | 179 | 28\% | 634 | 1,088 | 12 | 29 | 40 | $\pm 0$ | 55 | $\pm 0$ | 39 |
| 2013 | 0 | 34 | 75 | 109 | 17\% | 336 | 51\% | 208 | 32\% | 653 | 0 | 10 | 22 | 32 | $\pm 0$ | 62 | $\pm 0$ | 47 |

SOUTHEAST WYOMING WHITE-TAILED DEER HERD (WTD504)

| Hunt Area | Dates of Seasons |  |  | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type | Opens | Closes |  |  |
| 15 | , | Nov. 1 | Nov. 30 | 275 | Limited quota; any white-tailed deer |
|  |  | Dec. 1 | Dec. 31 |  | Unused Type 3 licenses valid for doe or fawn white-tailed deer |
|  | 8 | -Oct. 1 | Dec. 31 | 250 | Limited quota; doe or fawn white-tailed deer |
| $\begin{gathered} 59,60,62,63 \\ 64 \end{gathered}$ | 3 | Nov. 1 | Nov. 30 | 150 | Limited quota; any white-tailed deer, all lands within Curt Gowdy State Park, archery only; the Wyoming Game and Fish Commission's Tom Thorne/Beth Williams Wildlife Research Center at Sybille (Sybille Wildlife Research Unit) south of Wyoming Highway 34 shall be closed |
|  |  | Dec. 1 | Dec.-31 |  | Unused Area 59, 60, 62, 63, 64 Type 3 licenses valid for doe or fawn white-tailed deer in Area 63 and Area 64 |
| $\begin{gathered} 59,60,62,63, \\ 64 \end{gathered}$ | 8 | Nov. 1 | Dec. 31 | 125 | Limited quota; doe or fawn white-tailed deer, except the Wyoming Game and Fish Commission's Tom Thorne/Beth Williams Wildlife Research Center at Sybille (Sybille Wildlife Research Unit) south of Wyoming Highway 34 shall be closed; all lands within Curt Gowdy State Park, archery only |
| 70, 74 | 3 | Oct. 1 | Nov. 30 | 25 | Limited quota; any white-tailed deer |
| 75,76,77 | 3 | Oct. 1 | Nov. 30 | 25 | Limited quota; any white-tailed deer |
| 78,79,80, | 3 | Nov. 1 | Nov. 30 | 25 | Limited quota; any white-tailed deer |
|  | 8 | Sept. 1 | Dec. 15 | 25 | Limited quota; doe or fawn white-tailed deer |
| Archery |  | Sept. 1 | Sept. 30 |  | Refer to Section 3 of this Chapter. |


| Hunt Area | Type | Quota change from 2013 |
| :---: | :---: | :---: |
| 16,5515 | 3 | +125 |
| 16,5515 | 8 | +100 |
| 57 | 3 | -75 |
| 57 | 8 | -75 |
| $59,60,62-64$ | 3 | 0 |
| $59,60,62-64$ | 8 | +50 |
| 70,74 | 3 | +25 |
| $75,76,77$ | 3 | 0 |
| $78-81,161$ | 3 | 0 |
| $78-81,161$ | 8 | 0 |
| Total | $\mathbf{3}$ | $\mathbf{+ 7 5}$ |
|  | $\mathbf{8}$ | $\mathbf{+ 7 5}$ |

Management Evaluation
Current Management Objective: 4,000
Management Strategy: Recreational
2013 Post-season Population Estimate: Unknown
2014 Post-season Population Estimate: Unknown
The management objective for the Southeast Wyoming Herd Unit is a post-season population objective of 4,000 white-tailed deer. The management strategy is recreational management. The objective and management strategy were last revisited in 1999 and is planned to be reviewed in 2015.

There is not a reliable post-season population estimate for white-tailed deer in the Laramie region. This is an open herd with Colorado and Nebraska so trying to model this herd would violate the assumption that this herd has less than $10 \%$ interchange. Given nature of watersheds for movement this does not seem plausible with more than $10 \%$ exchange within southeast Wyoming. Seasons are designed to provide opportunity during the mating period when male deer are more vulnerable to harvest. Management is driven primarily by local Department personnel field observations of population trend, harvest data, and landowner tolerance for this species.

## Weather

Weather during 2013 and into 2014 was wetter and colder than normal. Post-season fawn ratios of 62 Juveniles: 100 Females were higher than 2012 ( $55 \mathrm{~J}: 100 \mathrm{~F}$ ) but lower than the ten-year average ( $69 \mathrm{~J}: 100 \mathrm{~F}$ ). The mild winter conditions and above average summer/fall moisture likely contributed to the increase in fawn production. Winter conditions were somewhat mild with low snowpack but with periods of extreme cold temperatures, followed up with above freezing periods. Refer to the following websites for weather data: http://www.ncdc.noaa.gov/temp-and-precip/time-series/ and http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/pdiimage.html.

## Habitat

There are no established habitat transects developed for this herd since their main source of diet comes from native rangelands that have been converted to croplands.

## Field/Harvest Data

This herd will grow rapidly until densities become too high, then seasons are adjusted to try and bring the population down or an EHD outbreak occurs that reduces densities. Hunter success is typically around $30 \%$ with hunter effort running about 12 days per harvest. Hunting opportunity is limited to private land. Low success rates and increased hunter effort are likely a result of hunters trying to find a white-tailed deer on public land, or trying to harvest a deer during the general season when they are less vulnerable to harvest. Chronic wasting disease is found throughout the herd unit but how it impacts this herd unit is unknown. The long-term prevalence rate average is around $20 \%$, but with a small sample size. Results from a study in Hunt Area 65 evaluating CWD impacts on white-tailed deer are scheduled to be published in the near future. There are a limited number of tooth samples so a reliable inference into population performance is not available.

The hunter satisfaction survey showed that $59 \%$ of the hunters were either satisfied or very satisfied, which is plausible given the late season opportunity for male deer.

## Population

There is not a reliable post-season population estimate. This is an open herd with Colorado and Nebraska so trying to model this herd would violate the assumption that it is closed. Seasons are
designed to provide opportunity during the mating period when male deer are more vulnerable to harvest.
Management is driven primarily by local Department personnel field observations of population trend, harvest data, and landowner tolerance for this species.
There are not enough tooth samples collected in the field to infer any population dynamics.

## Management Summary

Population trend varies on weather conditions and disease outbreaks. As densities become too high, the population will typically crash from an EHD outbreak. Severe winter conditions will also reduce white-tailed deer numbers if they go into the winter in poor condition. There have been no reports of winter mortalities. There was an EHD outbreak in 2012 that prompted a decrease in Type 8 licenses. However, given the ability of white-tailed deer to rebound quickly from an EHD outbreak the Type 3 licenses in Hunt Area 15 increased by 50. The Type 8 licenses in Hunt Areas 15 increased by 25 and the season length increased one month on the front end (Oct. 1). The Type 8 licenses in Hunt Areas 59, 60,62,63,64 increased by 50. Hunt areas 70,74 are split off from hunt areas 75-77 and added 25 Type 3 licenses.

For the 2014 season we will try to attain a harvest of approximately 800 white-tailed deer. Our objective is to provide opportunity and minimize damage.


White-tailed Deer (WT504) - Southeast Wyoming HA 16,55,57,59-64,70,73-81,83,161
Revised 10/99


[^0]:    
    

