2013 - JCR Evaluation Form

Population Size - Postseason

```
\(\square\) PR740 - POPULATION - PR740 - OBJECTIVE
```


Harvest

Number of Hunters

Harvest Success
\square PR740 - Hunter Success \% PR740-Active License Success

Active Licenses

\square PR740 - Active Licenses

Days Per Animal Harvested
\square PR740 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary
for Pronghorn Herd PR740-CHEYENNE RIVER

		MALES				FEMALES		JUVENILES		Tot Cls	Cls Obj	Males to 100 Females				Young to		
Year	Pre Pop	YIg	Adult	Total	\%	Total	\%	Total	\%			YIng	Adult	Total	Conf Int	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	51,650	601	1,081	1,682	27\%	2,950	47\%	1,630	26\%	6,262	1,982	20	37	57	± 3	55	± 3	35
2009	48,838	395	1,101	1,496	25\%	2,757	46\%	1,802	30\%	6,055	2,429	14	40	54	± 3	65	± 3	42
2010	42,854	411	1,054	1,465	29\%	2,345	46\%	1,309	26\%	5,119	2,261	18	45	62	± 3	56	± 3	34
2011	39,597	208	695	903	23\%	1,796	45\%	1,258	32\%	3,957	2,624	12	39	50	± 3	70	± 4	47
2012	29,709	202	462	664	21\%	1,513	48\%	960	31\%	3,137	2,156	13	31	44	± 3	63	± 4	44
2013	29,868	169	542	711	22\%	1,510	47\%	1,006	31\%	3,227	2,384	11	36	47	± 3	67	± 4	45

2014 HUNTING SEASONS

CHEYENNE RIVER PRONGHORN HERD (PR740)

Hunt Area	Season Dates				Limitations
	Type	Opens	Closes	Quota	
4	1	Oct. 1	Nov. 20	100	Limited quota licenses; any antelope
	6	Oct. 1	Nov. 20	25	Limited quota licenses; doe or fawn
5	1	Oct. 1	Nov. 20	100	Limited quota licenses; any antelope
	6	Oct. 1	Nov. 20	50	Limited quota licenses; doe or fawn valid on private land
6	1	Oct. 1	Oct. 15	350	Limited quota licenses; any antelope also valid in Area 8
7	1	Oct. 1	Oct. 15	300	Limited quota licenses; any antelope
8	1	Oct. 1	Oct. 15	450	Limited quota licenses; any antelope also valid in Area 6
9	1	Oct. 1	Oct. 31	600	Limited quota licenses; any antelope also valid in that portion of Area 11 in Converse or Niobrara counties
	6	Oct. 1	Oct. 31	650	Limited quota licenses; doe or fawn also valid in that portion of Area 11 in Converse or Niobrara counties
27	1	Oct. 1	Oct. 15	300	Limited quota licenses; any antelope
	7	Oct. 1	Oct. 15	75	Limited quota licenses; doe or fawn valid on private land

Hunt Area	Season Dates				Limitations
	Type	Opens	Closes	Quota	
29	1	Oct. 1	Oct. 15	100	Limited quota licenses; any antelope
	2	Oct. 1	Oct. 15	500	Limited quota licenses; any antelope valid on private land
	6	Oct. 1	Oct. 15	100	Limited quota licenses; doe or fawn valid on private land
	7	Oct. 1	Nov. 15	100	Limited quota licenses; doe or fawn valid south and west of Interstate Highway 25
Archery 4 \& 5		Sep. 1	Sep. 30		Refer to license type and limitations in Section 2.
Archery 6-9, 27 \& 29		Aug. 15	Sep. 30		Refer to license type and limitations in Section 2.

SUMMARY OF CHANGES IN LICENSE NUMBER

Hunt Area	License Type	Quota change from 2013
7	1	-50
7	6	-25
9	1	-100
9	6	-600
27	1	-100
27	6	-150
27	7	+75
29	1	-50
29	2	-50
29	6	-100
29	7	-100
Herd	$\mathbf{1}$	$\mathbf{- 3 0 0}$
Unit	$\mathbf{2}$	$\mathbf{- 5 0}$
Total	$\mathbf{6}$	$\mathbf{- 8 7 5}$
	$\mathbf{7}$	$\mathbf{- 2 5}$

Management Evaluation

Current Postseason Population Management Objective: 38,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 26,500
2014 Proposed Postseason Population Estimate: ~ 27,000
Herd Unit Issues: The management objective of the Cheyenne River Pronghorn Herd Unit is for an estimated post-season population of 38,000 pronghorn. This herd is managed under the recreational management strategy. The population objective and management strategy were set in 1999 when this herd was created by combining the South Black Hills and Thunder Basin Pronghorn Herd Units. This objective is currently under review, and consideration is being given to combining this herd with the Highlight Pronghorn Herd Unit (PR316).

The Cheyenne River Pronghorn herd unit encompasses much of northeastern Wyoming. Because of the disparity of habitats across the herd unit and the preponderance of private land, this herd unit is managed for recreational hunting. The herd unit encompasses $7,466 \mathrm{mi}^{2}$, of which $6,443 \mathrm{mi}^{2}$ is considered occupied pronghorn habitat. Most of the unoccupied habitat is found in Hunt Areas (HA's) 4 and 5, which include a portion of the Black Hills having topographical and vegetative features unsuitable for pronghorn. Approximately 77% of this herd unit is private land. The remaining 23% includes lands managed by the United States Forest Service (USFS), the Bureau of Land Management (BLM), and the State of Wyoming. Most of the occupied USFS lands are part of the Thunder Basin National Grassland (TBNG) and located in HA’s $5,6,7,27$, and 29, with HA 27 containing the largest amount. The State of Wyoming owns a large parcel of land in HA 9. Remaining public lands are scattered throughout the herd unit, and most are not accessible to the public. Access fees for hunting are common on private land, and many landowners have leased their property to outfitters. Therefore, accessible public lands are subjected to disproportionately heavy hunting pressure.

Major land uses in this herd unit include livestock grazing, oil and gas production, timber harvest, and farming. There are several oil and gas fields which occur primarily in HA's $6,7,8$, and 29, and development pressure has increased in recent years in HA's 8 and 29. Two surface coal mines represent a substantial land use within HA 27. Farming generally occurs in the southern most portion of the herd unit, but there are a number of wheat, oat, and alfalfa fields near Sundance and Upton. When pronghorn numbers are high, damage to growing alfalfa can become an issue.

Weather: The winter of 2010-11 was very harsh in the northern half of the herd unit. Overwinter mortality was well above average and losses of all ages of pronghorn continued into the spring. During this winter, large scale movements of pronghorn were also observed. Warmer and drier conditions beset the area during the end of bio-year 2011 and continued through the 2012-13 winter, with the 2012 summer being the driest on record in many places. April of 2013 finally saw a break in the drought when temperatures dropped below normal for the entire month, and significant precipitation was again received. This wetter and cooler pattern continued through the summer of 2013. In early October 2013, a winter storm "Atlas" blanketed the herd unit with 12 " to nearly 36 " of wet snow in some locations and drifts exceeding 6 -feet. While no significant level of pronghorn mortality was detected due to this storm, the snow and
resultant muddy conditions forced the cancellation of hunting for some license holders, and made accessing pronghorn difficult in many locations. Towards the end of the hunting seasons, travel conditions improved, but it was apparent winter storm Atlas negatively impacted hunter participation and hampered hunter success. The early winter months of bio-year 2013 brought temperature and precipitation conditions near the recent 30-year average. For detailed weather data see http://www.ncdc.noaa.gov/cag/time-series/us.

Habitat: The herd unit is dominated by Wyoming big sagebrush (Artemesia tridentata wyomingensis), silver sagebrush (Artemesia cana), and mid-prairie grasses such as wheatgrasses (Agropyron spp.), grama grasses (Bouteloua spp.), and needle grasses (Stipa spp.). In addition, there are several major drainages dominated by plains cottonwood (Populus deltoides) and greasewood (Sarcobatus vermiculatus). These drainages include the Cheyenne River, Antelope Creek, Black Thunder Creek, Beaver Creek, Old Woman Creek, Hat Creek, and Lance Creek. Steep canyons dominate the southern Black Hills portion of the herd unit, and there vegetation consists of ponderosa pine (Pinus ponderosa) and its associated savannah. Some areas are dominated by agricultural croplands, notably near the towns of Douglas, Lusk, Upton, and Sundance.

Habitat suitability for pronghorn varies greatly throughout the herd unit. Much of the habitat in the northeast portion of the herd unit is marginal, consisting of topography and vegetation not particularly suitable for pronghorn. The west-central portions of the herd unit represent the best block of contiguous sagebrush habitat. While the eastern and southern sections of the herd unit are dominated more by mid-grass prairie and agricultural lands, but locally do support good numbers of pronghorn. Habitat disturbance throughout the herd unit is generally high. There are a number of developed oil fields and areas impacted by bentonite and coal mining. In the central and southern portions of the herd unit, historic sagebrush control projects have decreased the amount of sagebrush available for wintering pronghorn at many sites. Yet, pronghorn still winter in this region. Habitat loss and fragmentation is expected to continue and negatively impact this herd. Based upon current exploration and leasing trends, the amount of disturbance caused by mining, and oil \& gas activities will continue to increase in HA’s 8, 27 and 29. In addition, a large wind farm is planned in HA 29.

Beginning in the fall of 2001, Department personnel established Wyoming big sagebrush monitoring transects within the herd unit. Forage conditions away from irrigated fields within this herd unit were poor between 2001 and 2004, improved substantially in 2005, and then declined dramatically during 2006, when severe drought plagued the herd unit. Based on these transects, forage conditions rebounded in 2007, and remained good in 2008 and 2009. Leader production measurements were suspended in 2010, but over-winter estimates of use continued through 2011. As previously mentioned, sagebrush leader growth improved in 2007, however, the post-season population of this herd peaked that year and winter use of sagebrush leaders was excessive. ${ }^{1}$ It was apparent the population of pronghorn and other animals (notably cotton-tailed rabbits) browsing sagebrush at that time was not sustainable. Increased harvest along with reduced recruitment and survival began to push this pronghorn population down. As this herd declined, winter use of sagebrush dropped and range conditions improved through 2011. Then, the severe drought of 2012 resulted in very poor forage production and elevated use during and

[^0]after the growing season. Neither sagebrush production nor utilization was measured in 2013. However, a very wet spring and summer were experienced during 2013, and there were low numbers of pronghorn on the range. Consequently, casual observations of range conditions showed excellent leader growth and reduced winter use.

Field Data: This population's recent decline was accentuated during the winter of 2010-2011 and subsequent drought of 2012. Drought in 2012 negatively impacted fawn survival, and the fawn:doe ratio decreased to 62:100. During 2013, fawn production and survival again were reduced, and late summer losses to Epizootic Hemorrhagic Disease (EHDV) observed. The 2013 observed fawn:doe ratio was 67:100 and adequate sample sizes for each hunt area were attained. While considered low for pronghorn, this value was 8% above the previous five-year average (62:100), but still 7\% below the long-term average of 72:100.

Over the last 30^{+}years annual productivity of this herd, as measured by preseason fawn:doe ratios, has generally declined (Figure 1). This is thought to be the result of a reduction in habitat quantity and quality, intensified by drought, plant succession, aging of sagebrush, and overbrowsing from both domestic livestock and wildlife. However, productivity was fairly stable and generally good between 1998 and 2006 (avg. 78; std. dev. 6.3). A situation credited to mild winters persisting during intensifying drought, even though this population was estimated to be above objective most years. However, as this population moved more significantly above objective beginning in 2005 and drought continued, fawn:doe ratios began to decline. This trend continued through 2008. During this time frame severe snow storms plagued the herd unit each April and May. In addition, June weather each year was cooler and wetter than normal. While this precipitation provided a much-needed boost for rangeland health, the combination is believed to have increased post-season mortality of adults and reduced survival of fawns. Predation of fawns may have also increased during this time as well, as small animal populations dropped throughout the herd unit. Since 2008 the herd's preseason fawn:doe has trended upwards slightly, but has averaged only 63 fawns per 100 does (std. dev 6.0). This has translated

Figure 1: Observed Annual, and Recent Five-Year Average Fawn:Doe Ratios (1980-2013).
into a continued population decline, even as hunting seasons became more conservative.
As this population rose between 2002 and 2006, preseason buck:doe ratios fluctuated, but generally increased. Between 2007 and 2012, preseason buck:doe ratios generally declined, as this population dropped and the relative percentage of bucks harvested from the population increased annually. The population model simulates an increase in buck ratios from 48:100 in 2002 to a peak of 60:100 in 2007 and a subsequent decline back to $48: 100$ in both 2012 and 2013, a value projected to continue into 2014. This preseason value of 48 bucks per 100 does is near the midpoint of the Department's recreational management criteria.

Small changes in female mortality rates can greatly affect observed male:female ratios (Bender 2006). Historic fluctuations in observed buck:doe ratios in some hunt areas may have been influenced as much by changes in female survival as by buck harvest, at least in hunt areas where we have no difficulty increasing doe harvest, such as HA 27 and portions of HA's 7, 9, and 29. This may explain the wide variation in observed buck:doe ratios within the herd unit between some years. As Bender (2006) states, managers should consider the significant influence small changes in female mortality rates have on observed male:female ratios when managing male escapement from harvest in ungulate populations.

Harvest Data: Since 2008 hunter success has dropped and effort has generally continued to increase. In 2013, most hunt areas exhibited low success compared to what is normally observed for pronghorn within the state and this herd unit. Active license success on doe/fawn tags ranged from 60% in HA 29 to 76% in HA's $5 \& 27$. Type 1 active license success varied from 63% in HA 8 to 89% in HA 6. Herd unit wide, active license success was 67% on doe/fawn tags and 77% on type $1 \& 2$ licenses. Again, winter storm "Atlas" impacted the entire herd unit during the first week of October, with snow and mud lingering through the hunting season. This resulted in some hunters cancelling planned trips, as the percentage of active licenses fell about ten to fifteen percent from historical values. Additionally, the weather and associated travel conditions likely reduced active license success. Although hunter success has dropped recently, the hunter satisfaction survey revealed herd unit-wide 40% of hunters were very satisfied, and 37% satisfied with their hunt in 2012; and similar values were reported in 2013, with 39% of hunters stating they were very satisfied, and 38% satisfied with their hunt.

Population: Following inclusion of line transect and harvest data collected in 2013, the modeled 2013 post-season population estimate was about 26,500. The revised model significantly lowered estimated populations for the previous 5 -years. Consequently, pre and post season population estimates in the JCR database were updated for bio-years 2008 through 2013. This population had been trending downwards each year since peaking at about 51,000 pronghorn in 2006^{2}. The recent line transect survey was conducted in June 2013, and resulted in an end of 2012 bio-year population estimate of 20,400 (Appendix 1). This was a notable reduction from the 2011 line transect estimate of 30,900 . This population was generally stable near objective between 1993 and 2002. The population then increased rapidly through 2006 as fawn survival was very good, with observed preseason fawn:doe ratios averaging 80:100 between 2002 and 2006. This, coupled with our inability to sell all doe/fawn licenses, made controlling the population difficult. Since then, a reduction in price of doe/fawn licenses, the

[^1]ability for hunters to possess up to four of them, internet license sales, and enrollment of private lands in our PLPW program substantially increased our ability to affect doe/fawn harvest. Between 2007 and 2012 this population dropped significantly in the wake of increased female harvest, reduced fawn recruitment, and increased non-hunting mortality of adults.

As previously mentioned, this population's recent decline, while driven by increased mortality and reduced recruitment, was exasperated by above normal winter and spring mortality in bioyear 2010. In addition to lower fawn production and survival in bio-year 2013, late summer losses of all age classes to Epizootic Hemorrhagic Disease (EHDV) were observed. It is also suspected, although not confirmed, that pronghorn mortality was increased in late summer and early fall both of the previous two bio-years due to EHDV as well.

The "Semi Constant Juvenile \& Semi Constant Adult" (SCJ SCA) spreadsheet model was chosen to estimate this herd's population. All three competing models simulate a population rise between 2002 and 2006 or 2007 (TSJ CA), followed by a decline through 2012 and leveling off to slight increase in 2013. However, the SCJ SCA model exhibited the lowest AICc value. The magnitude of trends produced by SCJ SCA model also dovetail well with trends in harvest statistics and the perceptions of local game managers, landowners, and hunters; and amongst competing models it tracks observed data (including recent LT estimates) very well. The SCJ SCA model was also chosen because, along with the lowest AICc, all three competing models produced post-season population estimates for both 2012 and 2013 that were within about 10\% of each other. This model functions well because it allows for modeling the increased mortality observed during the severe winters of 2000-2001 and 2010-2011.

Management Summary: The 2012 and 2013 hunting seasons were conservative in this herd unit, and changes for the 2014 season entail continuing and augmenting this same strategy. Doe/fawn harvest has been significantly reduced or eliminated in all hunt areas. Additionally, issuance of any antelope tags was curtailed somewhat to maintain buck:doe ratios at their current level. The largest reductions in harvest should occur in HA's 9, 27, and 29, where most doe/fawn harvest has continued to date. In HA 9, claims for damage from pronghorn are no longer being submitted, and landowners have noted a drop in pronghorn numbers. In HA 29, in response to complaints from landowners and hunters on public land about low pronghorn numbers, last year a type 2 (any antelope) license valid on private land only was issued, while type 1 license numbers were greatly reduced. Here, issuance of type 6 tags was also reduced and were restricted to private land in 2013. These changes were well received by many of the landowners and significantly reduced harvest pressure on public lands in the northern part of HA 29 where pronghorn numbers have plummeted.

Concerns remain about low pronghorn numbers on public lands, notably the TBNG in both HA's $29 \& 27$. To help address this, reduced priced doe/fawn tags available for HA 27 have been confined in validity to private land via a new type 7 tag, while the type 6 tags have been eliminated. In addition, issuance of type 1 (any antelope) licenses was reduced 25\% in HA 27, an area where residents hold 80% of the licenses, draw odds for non-residents are some of the most difficult in the state, and most of the hunting occurs on public land. Here, active type 1 license success has remained below 80% for two years in a row, and the percentage of residents
reporting they were satisfied or very satisfied with their hunt fell from 89% in 2011 to 64% in 2012, and remained similar in 2013 at 68\%.

Finally, to address landowner concerns along the boundary of HA's 6 and 8, a change in license limitations allowing hunters with HA 6 tags to hunt in HA 8 and vice versa has been enacted. The east-west boundary between these hunt areas consists of county roads, which antelope frequently cross. Landowners whose properties straddle this boundary have over the years requested ability for hunters to hunt both sides of these roads. Because landownership patterns are similar in both hunt areas, the Department felt we could try this approach for a couple years, which if successful could lead to a combining of hunt areas and regulation simplification in the future.

Given average fawn:doe and buck:doe ratios observed the past 5-years and consistent survival rates, combined with a predicted harvest of 2,780 pronghorn, the 2014 hunting season should allow the post-season population of this herd to grow about 2\%, to 27,000 pronghorn.

Literature Cited:

Bender, Louis C. 2006. Uses of herd composition and age ratios in ungulate management. Wildlife Society Bulletin. Vol. 34 (4): 1225-1230.

INPUT	
Species:	Pronghorn
Biologist:	Joe Sandrini
Herd Unit \& No.:	Chey. River PR740
Model date:	$01 / 27 / 14$

d

Fit

166
131
64

 드N old


```
(1)
```

An
An

Annual Field Est
Annual Field Est

Appendix 1
PR 740 Line Transect Results
End of Bio-Year 2012

Effort: $\quad 2785.763$
\# samples: 96
Width: 213.5000
Left: $\quad 0.0000000$
\# observations: 306
Model 1
Half-normal key, $\mathrm{k}(\mathrm{y})=\operatorname{Exp}\left(-\mathrm{y}^{* *} 2 /\left(2^{*} \mathrm{~A}(1)^{* *} 2\right)\right)$

Parameter	Point Estimate	Standard Error	Percent Coef. Of variation	95 \% Confidence Interval	
DS	1.9853	0.17117	8.62	1.6744	2.3540
E(S)	1.5981	$0.57992 \mathrm{E}-01$	3.63	1.4880	1.7164
D	3.1728	0.29679	9.35	2.6389	3.8147
N	20442.	1912.2	9.35	17002.	24578.

Measurement Units
Density: Numbers/Sq. miles ESW: meters
Component Percentages of $\operatorname{Var}(\mathrm{D})$
Detection probability: 341
Encounter rate: $\quad 50.8$
Cluster size: 15.0
Estimation Summary - Encounter rates

	Estimate	\%CV	df	95%	Confidence Interval
n	306.00				
k	96.000				
L	2785.8				
n / L	0.10984	6.67	48.00	$0.96076 \mathrm{E}-01$	0.12559
Left	0.0000				
Width	213.50				

Estimation Summary - Detection probability
Half-normal/Cosine

	Estimate	\%CV	df	95\% Confidence Interval	
m	1.0000				
LnL	-479.57				
AIC	961.13				
AICc	961.15				
BIC	964.86				
Chi-p	0.25585				
f(0)	$0.69785 \mathrm{E}-02$	5.47	305.00	$0.62674 \mathrm{E}-02$	$0.77702 \mathrm{E}-02$
p	0.67119	5.47	305.00	0.60280	0.74733
ESW	143.30	5.47	305.00	128.70	159.56

Estimation Summary - Expected cluster size
Estimate

Average cluster size	\%CV	df	95\% Confidence Interval	
1.7778	5.87	305.00	1.5840	1.9953

Half-normal/Cosine

	Estimate	\%CV	df	95\% Confidence Interval	
r	$0.60850 \mathrm{E}-01$				
r-p	0.14433				
E(S)	1.5981	3.63	304.00	1.4880	1.7164

Estimation Summary - Density \& Abundance
Half-normal/Cosine

	Estimate	\%CV	df	95% Confidence Interval	
D	1.9853	8.62	125.25	1.6744	2.3540
DS	3.17828	9.35	171.34	2.6389	3.8147
N	20,442	9.35	171.34	17,002	24,578

Pronghorn - Cheyenne River
Hunt Areas 4, 5, 6, 7, 8, 9, 27, \& 29
Casper Region

2013 - JCR Evaluation Form

SPECIES: Pronghorn		PERIOD: 6/1/2013-5/31/2014	
HERD: PR745 - RATTLESNAKE			
HUNT AREAS: 70-72		PREPARED BY: HEATHER	

Population Size - Postseason \square PR745-POPULATION - PR745-OBJECTIVE

Harvest

Number of Hunters

Harvest Success
\square PR745 - Hunter Success \% PR745 - Active License Success

Active Licenses

Days Per Animal Harvested
\square PR745 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary
for Pronghorn Herd PR745-RATTLESNAKE

		MALES				FEMALES		JUVENILES		Tot Cls	Cls Obj	Males to 100 Females				Young to		
Year	Pre Pop	Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	$\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$	$\begin{array}{r} 100 \\ \text { Fem } \end{array}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	18,407	434	823	1,257	28\%	2,114	46\%	1,183	26\%	4,554	1,952	21	39	59	± 3	56	± 3	35
2009	18,269	330	954	1,284	30\%	1,951	46\%	1,027	24\%	4,262	2,276	17	49	66	± 3	53	± 3	32
2010	18,033	271	933	1,204	32\%	1,599	42\%	970	26\%	3,773	2,827	17	58	75	± 4	61	± 4	35
2011	12,938	195	683	878	27\%	1,607	50\%	721	22\%	3,206	1,616	12	43	55	± 3	45	± 3	29
2012	10,343	82	209	291	24\%	662	53\%	285	23\%	1,238	1,140	12	32	44	± 5	43	± 5	30
2013	9,268	45	199	244	20\%	624	50\%	381	31\%	1,249	1,901	7	32	39	± 5	61	± 6	44

2014 HUNTING SEASONS

RATTLESNAKE PRONGHORN HERD (PR745)

$\begin{aligned} & \text { Hunt } \\ & \text { Area } \end{aligned}$	Type	Date of Seasons		Quota	Limitations
		Opens	Closes		
70	1	Sep. 15	Oct. 31	100	Limited quota; any antelope
	6	Sep. 15	Nov. 30	100	Limited quota; doe or fawn antelope
71	1	Sep. 15	Oct. 31	100	Limited quota; any antelope
	6	Sep. 15	Oct. 31	50	Limited quota; doe or fawn antelope
72	1	Sep. 15	Oct. 31	400	Limited quota; any antelope
	6	Sep. 15	Oct. 31	100	Limited quota; doe or fawn antelope
Archery		Aug. 15	Sep. 14		Refer to license type and limitations in Section 2

Hunt Area	Type	Quota change from 2013
70	1	-100
	6	-100
71	1	-100
	6	-50
72	1	-200
	6	-100
Total	1	-400
	6	-250

Management Evaluation

Current Management Objective: 12,000
Management Strategy: Special
2013 Postseason Population Estimate: ~8,100
2014 Proposed Postseason Population Estimate: ~8,500

The Rattlesnake Pronghorn Herd Unit has a post-season population management objective of 12,000 pronghorn. The herd is managed using the special management strategy, with a goal of maintaining preseason buck ratios between $60-70$ bucks per 100 does. The objective and management strategy were last revised in 1988, and will be formally reviewed in 2015. A line transect survey will be conducted in May 2014 to be used in conjunction with the formal objective review.

Herd Unit Issues

The 2013 post-season population estimate was approximately 8,100 and trending slightly upward from 2012 estimates. This herd unit did not have a functional population model until 2012, when a spreadsheet-based modeling system replaced the program POP-II to simulate herd dynamics. Prior management decisions for this herd were made using a combination of classification data, harvest statistics, observations of field personnel, and comments from hunters and landowners regarding pronghorn numbers. Line transect surveys were also conducted in 1998, 2000, and 2003 to provide end-of-year population estimates. A subsequent line transect surveys conducted in 2007 was deemed unusable and discarded. The current model is considered to be of poor quality, as personnel believe there to be significant interchange between the Rattlesnake and Beaver Rim Herd Units. For this reason, managers will evaluate the utility of combining these two herd units in 2015.

Hunting access within the herd unit is moderate, with some large tracts of public land as well as walk-in areas and a hunter management area. Traditional ranching and grazing are the primary land use over the whole herd unit, with scattered areas of oil and gas development. Hunt Areas $70 \& 71$ are dominated by private lands. License issuance is typically maintained in Area 70 to address damage issues on irrigated agricultural fields. Periodic disease outbreaks (i.e. hemorrhagic diseases, Clostridium spp. infections) are possible in this herd and can contribute to population declines when environmental conditions are suitable. A small number of pronghorn in the herd were reported to have perished from Epizootic Hemorrhagic Disease (EHD) during the late summer of 2013. Samples sent to the Wyoming Vet Lab from neighboring hunt areas confirmed this. The extent to which pronghorn have been impacted by EHD in recent years is unknown, but is potentially more significant than managers realize.

Weather

The winter of 2010-2011 was severe throughout the herd unit, resulting in higher mortality of pronghorn across all age classes. Conditions were warm and dry for the herd unit in 2011 and shrub production was below average, resulting in poor nutrition of pronghorn entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 2011-2012 which likely had a negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Fawn survival over the severely dry summer and winter was low, as evidenced by low yearling buck ratios the following year. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013 in much of the herd unit. Heavy rains fell during the
second half of September 2013, making travel in much of the herd unit difficult to impossible. In early October 2013, winter storm "Atlas" blanketed the herd unit with 12-36" of wet snow. While no significant pronghorn mortality was detected as a result, the snow and resulting muddy conditions forced the cancellation of hunting for some license holders, and made accessing pronghorn difficult in many locations. Travel conditions improved toward the end of hunting seasons, but by then it was apparent winter storm Atlas had a negative impact on hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30 -year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

This herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse for pronghorn. Additionally, there are no comparable habitat transects in neighboring herd units to reference. Anecdotal observations and discussions with landowners in the region indicate that summer and winter forage availability for pronghorn was average in 2013. Herbaceous forage species were observed to be in better condition in 2013 compared to the severely dry 2012, and pronghorn appeared to more widely distributed across suitable habitat.

Field Data

Fawn ratios were high in this herd from 1998-2005, and the population grew markedly during this time period. However, license issuance was modest and the population grew above management control by harvest. Fawn ratios were moderate from 2006-2010, but pronghorn populations were already high by this time period. License issuance increased significantly every year from 2006-2011 in an attempt to curb high pronghorn numbers and reduce the herd toward objective. By 2011, environmental factors combined with low fawn production/survival and high harvest pressure had rapidly reduced this herd below objective. Harsh winter conditions in 2010-11 combined with severe drought in 2012 have since dropped this herd unit below management objective, and license issuance has become more conservative. Improved moisture and favorable weather conditions appeared to have helped fawn production and survival in 2013, as the fawn ratio improved to 61:100 following a low of 43:100 does in 2012.

Buck ratios for the Rattlesnake herd historically range from the mid 40s to mid 70s per 100 does. Buck ratios are most commonly in the upper 50s, just below the lower limit for special management. In more recent years, buck ratios have dropped to the mid-40s as a result of low fawn recruitment and high harvest pressure on a diminishing population. In 2013, the buck ratio for the Rattlesnake Pronghorn Herd reached a 22-year low of 39:100 does. While it can be difficult to maintain this herd within the range of special management due to differing
management strategies for Area 70 versus Areas 71 and 72, hunters have developed high expectations for buck numbers and quality within this herd. Managers thus plan to manage pronghorn to improve and maintain the buck ratio within special management parameters.

Harvest Data

License success in this herd unit is typically in the $90^{\text {th }}$ percentile. Success declined the last three years to the low $80^{\text {th }}$ percentile while hunter days increased, indicating pronghorn were more difficult for hunters to find and harvest. Despite drastic reductions in license numbers in 2012 and 2013, license success and hunter days remained mediocre and effort increased significantly as many hunters remarked that bucks were more difficult to find and of lower quality. While some of the low harvest success can be attributed to poor access due to muddy and/or snowy conditions, fawn production and buck ratios remain below average. Thus, managers will recommend further license reductions in 2014 with the goal of increasing buck ratios and population numbers overall.

Population

The "Time-Specific Juvenile Survival - Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen for the post-season population estimate of this herd. This model seemed most representative of the herd, as it selects for low juvenile survival in the years when managers agree that overwinter fawn survival was very poor - particularly in 2010-2012. The simpler models (CJ,CA and SCA,CA) select for higher juvenile survival rates across years, which does not seem feasible for this herd. All three models follow a trend that is plausible; however the CJ,CA model shows an extremely high buck harvest percentage in 2011, and the SCA,CA model shows a 2006 population peak that seems unrealistic. None of the three models track well with the three line transect estimates, but rather track in between them. While the AIC for the TSJ,CA model is the highest of the three, it is only due to year-by-year penalties on juvenile survival and is still well within one level of power in comparison to the AICs of the simpler models. The TSJ,CA model appears to be the best representation relative to the perceptions of managers on the ground and follows trends with license issuance and harvest success. A line-transect survey is scheduled for May 2014 and should help better align the model. Overall the current model is considered fair in quality as a representation of herd dynamics.

Management Summary

Traditional season dates in this herd unit run from September $15^{\text {th }}$ through October $31^{\text {st }}$, and through November $30^{\text {th }}$ for Area 70 Type 6 licenses. We recommend the same season dates for 2014, with a reduction of licenses in lieu of poor fawn production/survival and declining buck ratios. The 2014 season includes a total of 600 Type 1 and 250 Type 6 licenses. Goals for 2014
are to increase pronghorn numbers back towards objective, improve buck ratios consistent with special management strategy, and increase hunter success.

If the projected harvest of 750 pronghorn is achieved with fawn production/survival similar to the last few years, this herd will increase slightly in number. The predicted 2014 post-season population size for the Rattlesnake Pronghorn Herd is approximately 8,500 animals, which is 32% below objective.

	MODELS SUMMARY	Fit
	Relative AICc	
CJ,CA	Constant Juvenile \& Adult Survival	140
SCJ,SCA	Semi-Constant Juvenile \& Semi-Constant Adult Survival	149
TSJ,CA	Time-Specific Juvenile \& Constant Adult Survival	132

\section*{| | Population Estimates from Top Model | | | |
| :--- | :--- | :---: | :---: | :---: |
| | Predicted Prehunt Population (yeari) | Total | Predicted Posthunt Population (yeari) | Total |}

Antelope - Rattlesnake
Hunt Areas 70,71,72
Casper Region
Revised 4/88

2013 - JCR Evaluation Form

SPECIES: Pronghorn		PERIOD: 6/1/2013-5/31/2014
HERD: PR746 - NORTH NATRONA		
HUNT AREAS: 73		PREPARED BY: HEATHER

Population Size - Postseason

Harvest

Number of Hunters

Harvest Success
\square PR746 - Hunter Success \% PR746 - Active License Success

Active Licenses

Days Per Animal Harvested
\square PR746 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary

Year	Pre Pop	MALES				females		JUVENILES		Tot Cls	$\begin{aligned} & \mathrm{Cls} \\ & \text { Obj } \end{aligned}$	Males to 100 Females				Young to		
		Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{array}{r} 100 \\ \text { Fem } \end{array}$	$\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	13,024	245	380	625	30\%	972	46\%	508	24\%	2,105	2,056	25	39	64	± 5	52	± 4	32
2009	14,995	273	541	814	29\%	1,218	43\%	809	28\%	2,841	2,361	22	44	67	± 4	66	± 4	40
2010	13,905	172	392	564	28\%	932	46\%	552	27\%	2,048	1,988	18	42	61	± 5	59	± 5	37
2011	12,323	119	540	659	25\%	1,322	49\%	697	26\%	2,678	2,129	9	41	50	± 3	53	± 4	35
2012	10,798	127	190	317	23\%	713	53\%	327	24\%	1,357	1,843	18	27	44	± 5	46	± 5	32
2013	11,932	69	318	387	23\%	817	48\%	497	29\%	1,701	1,832	8	39	47	± 4	61	± 5	41

2014 HUNTING SEASONS

 NORTH NATRONA PRONGHORN HERD (PR746)| Hunt Area | Type | Date of Seasons | | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Opens | Closes | | |
| 73 | 1 | Sep. 15 | Oct. 31 | 800 | Limited quota; any antelope |
| | 6 | Sep. 15 | Oct. 31 | 100 | Limited quota; doe or fawn antelope |
| Archery | | Aug. 15 | Sep. 14 | | Refer to license type and limitations in Section 2 |

Hunt Area	Type	Quota change from 2013
73	1	No change
	6	No change
	7	-100, removed license type

Management Evaluation

Current Postseason Population Management Objective: ~ 9,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 11,250
2014 Proposed Postseason Population Estimate: ~ 11,400

The North Natrona Pronghorn Herd Unit has a post-season population management objective of 9,000 pronghorn. The herd is managed using the recreational management strategy, with a goal of maintaining preseason buck ratios between 30-59 bucks per 100 does. The objective and management strategy were last revised in 1987, and will be formally reviewed in 2014.

Herd Unit Issues

Hunting access within the herd unit is very good, with large tracts of public lands as well as walk-in areas available for hunting. The southeastern corner of the herd unit is the only area dominated by private lands. In this area, specific doe/fawn licenses have been added to address damage issues on irrigated agricultural fields in years when landowners agree to allow hunting access. The main land use within the herd unit is traditional ranching and grazing of livestock. Industrial scale developments, including oil and gas development, are limited and isolated within this herd unit. Periodic disease outbreaks (i.e. hemorrhagic diseases, Clostridium spp. infections)
can impact this herd and contribute to population declines when environmental conditions are suitable.

Weather

The winter of 2010-2011 was severe throughout the herd unit, resulting in higher mortality of pronghorn across all age classes. Conditions were warm and dry for the herd unit in 2011 and shrub production was below average, resulting in poor nutrition of pronghorn entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 2011-2012 which likely had a negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Fawn survival over the severely dry summer and winter was low, as evidenced by low yearling buck ratios the following year. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013 in much of the herd unit, though the northeastern portion of the unit continued to suffer very dry conditions. In early October 2013, winter storm "Atlas" blanketed the herd unit with 12-36" of wet snow. While no significant pronghorn mortality was detected as a result, the snow and resulting muddy conditions forced the cancellation of hunting for some license holders, and made accessing pronghorn difficult in many locations. Travel conditions improved toward the end of hunting seasons, but by then it was apparent winter storm Atlas had a negative impact on hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30-year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

Currently, this herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse for pronghorn. Additionally, there are no comparable habitat transects in neighboring herd units to reference. Through anecdotal observations and shrub monitoring for other big game species, it is believed that summer and winter forage availability for pronghorn was average in 2013, with the possible exception of areas in the northeast that remained dry. Several sagebrush transects will be established in April 2014, with the goal of evaluating utilization from pronghorn in time for the formal objective review. If data prove valuable from these transects, they will be maintained and developed permanently to monitor habitat condition and use by big game species.

Field Data

Fawn ratios were high in this herd from 2002-2005, and the population grew markedly during this time period. Fawn ratios were moderate to poor from 2006-2013, but the population continued to grow through 2009 as license issuance did not keep pace with herd growth. In 2010-2011, license issuance increased sharply to address high antelope numbers and reduce the herd toward objective. By 2012, higher license issuance was no longer necessary to control growth of the herd, and licenses were reduced. Hunter harvest, mortality from harsh winter conditions in 2010-2011, extremely poor fawn production/survival, and severe drought in 2012 has subsequently reduced this herd. License issuance was again reduced in 2013 to compensate for a declining population.

Buck ratios for the North Natrona Herd historically average in the mid-50s:100 does, though they exceeded recreational limits from 2007-2010, when ratios were in the 60s. Since then, buck ratios have dropped markedly each year along with the population as a whole, reaching a 15 -year low of 44 bucks per hundred does in 2012. The buck ratio improved slightly in 2013, with 47 bucks:100 does. This is still well within the target range for recreational management, and managers would like to keep buck ratios in this range. Ultimate management goals are to sustain high hunter satisfaction while continuing to offer exceptional opportunity and good drawing odds via recreational management.

Harvest Data

License success in this herd unit is typically in the $80-90^{\text {th }}$ percentile. However, in 2013 license success dropped to 72% for Type 1 licenses and 83% for Type 6 licenses. This sudden decline in license success was due in large part to limited access resulting from heavy snows and muddy road conditions. Rain and snow were prominent during the first half of the hunting season and greatly reduced access to pronghorn and harvest success within the herd unit. Despite this, hunter satisfaction increased from 82% in 2012 to 89% in 2013 , indicating that hunters were pleased with their hunt despite issues of poor weather and road conditions. In addition, there were no negative comments submitted from hunters in the harvest report for the North Natrona Herd Unit.

Population

The 2013 post-season population estimate was approximately 11,250 and trending upward after an estimated low in 2012 of 9,700 pronghorn. A line-transect survey was conducted in this herd unit in May 2013 and resulted in an end-of-bioyear population estimate of 11,083, with a standard error of $\pm 2,235$ (see Appendix A). The model estimate for end-of-year population size in 2013 is slightly below the confidence intervals for the 2013 line-transect survey.

The "Time-Specific Juvenile Survival - Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen to use for the post-season population estimate of this herd. This model seemed the most representative of the herd, as it selects for higher juvenile survival during the years when field personnel observed more favorable environmental and habitat conditions, particularly from 2003-2008. The simpler models (CJ,CA and SCJ,CA) select for a very low juvenile survival rate across years, which does not seem feasible for this herd. All three models follow a trend that seems representative for this herd unit. The three models each align partially to four line-transect estimates - each model aligning through some but not all line-transect estimates completely. However, the CJ,CA and SCJ,CA models estimate population peaks in 2009 that do not seem realistic compared to the perceptions of field personnel and landowners at that time. While the AIC for the TSJ,CA model is the highest of the three, it is only due to year-by-year penalties and is still well within one level of power in comparison to the AICs of the simpler models. The TSJ, CA model aligns with two of four line transect estimates, and is very close to the confidence intervals for the remaining two. The TSJ,CA model appears to be the best representation relative to the perceptions of managers on the ground, and follows trends with license issuance and harvest success. Overall the model is considered to be fair in representing dynamics of the herd.

Management Summary

Traditional season dates in this herd run from September $15^{\text {th }}$ through October $31^{\text {st }}$. Season dates will remain the same for 2014 , as will Type 1 license issuance. The 2014 season includes 800 Type 1 licenses, and 100 Type 6 licenses. The Type 7 licenses will be eliminated in 2014, as access on private lands in the southeast corner of the herd unit has been poor. Landowners that normally utilize the Type 7 license can still take hunters with a Type 6 license, should they have a need to control for agricultural damage. While fawn ratios and population growth rates have been below average in recent years, habitat conditions appeared to improve in 2013. Goals for 2014 are to maintain pronghorn numbers near objective, maintain buck ratios, and increase hunter success.

If we attain the projected harvest of 775 with fawn ratios similar to the last few years, this herd will remain stable at slightly above objective. The predicted 2014 post-season population size of the North Natrona Pronghorn Herd is approximately 11,400 animals, which is 27% above objective.

Comments:

Appendix A:
 North Natrona Pronghorn Line Transect Survey Bio-Year 2012 - Results and Histogram

Effort:	483.4900
\# samples:	38
Width:	212.0000
Left:	0.0000000
\# observations:	216
Model 1	
Hazard Rate key, $\mathrm{k}(\mathrm{y})=1-\operatorname{Exp}\left(-(\mathrm{y} / \mathrm{A}(1))^{* *}-\mathrm{A}(2)\right)$	

Parameter	Point Estimate	Standard Error	Percent Coef. of Variation	95\% Confidence Interval	
DS	5.6807	1.1247	19.80	3.8594	8.3615
E(S)	1.5659	$0.59588 \mathrm{E}-01$	3.81	1.4527	1.6878
D	8.8951	1.7934	20.16	6.0024	13.182
N	11083	2234.5	20.16	7479.0	16425

Measurement Units
Density: Numbers/Sq. miles
ESW: meters

Component Percentages of $\operatorname{Var}(\mathrm{D})$
Detection probability: 79.5
Encounter rate: 16.9
Cluster size: 3.6
Estimation Summary: Encounter Rates

	Estimate	\% CV	DF	95\% Confidence Interval	
n	216.00				
k	38.000				
L	483.49				
n / L	0.44675	8.29	19.00	0.37572	0.53122
Left	0.0000				
Width	212.00				

Estimation Summary: Detection Probability
Hazard/Polynomial

	Estimate	\% CV	DF	95\% Confidence Interval	
m	2.0000				
LnL	-288.94				
AIC	581.88				
AICc	581.94				
BIC	588.63				
Chi-p	0.45571				
f(0)	$0.79011 \mathrm{E}-02$	17.98	214.00	$0.55588 \mathrm{E}-02$	$0.11230 \mathrm{E}-01$
p	0.59701	17.98	214.00	0.42003	0.84855
ESW	126.57	17.98	214.00	89.046	179.89

Estimation Summary - Expected Cluster Size
Estimate

Average cluster size	\%CV	df	95\% Confidence Interval	
1.6250	5.29	215.00	1.4643	

Hazard/Polynomial

	Estimate	\% CV	DF	95\% Confidence Interval	
r	$-0.34582 \mathrm{E}-02$				
r-p	0.47985				
E(S)	1.5659	3.81	214.00	1.4527	1.6878

Estimation Summary - Density \& Abundance

	Estimate	\% CV	DF	95\% Confidence Interval	
D	.6807	19.80	208.56	3.8594	8.3615
DS	8.8951	20.16	223.96	6.0024	13.182
N	11083	20.16	223.96	7479.0	16425

Antelope - North Natrona
Hunt Area 73
Casper Region
Revised 4/88

2013 - JCR Evaluation Form

SPECIES: Pronghorn		PERIOD: 6/1/2013-5/31/2014
HERD: PR748 - NORTH CONVERSE		
HUNT AREAS: $25-26$		PREPARED BY: ERIKA

Population Size - Postseason

Harvest

Number of Hunters

Harvest Success

Active Licenses

PR748 - Active Licenses

Days Per Animal Harvested
\square PR748 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary
for Pronghorn Herd PR748 - NORTH CONVERSE

		MALES				FEMALES		JUVENILES		Tot Cls	$\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$	Males to 100 Females				Young to		
Year	Pre Pop	Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	32,797	289	488	777	27\%	1,248	44\%	832	29\%	2,857	3,496	23	39	62	± 4	67	± 5	41
2009	38,680	312	740	1,052	29\%	1,430	40\%	1,101	31\%	3,583	3,287	22	52	74	± 5	77	± 5	44
2010	35,678	373	807	1,180	32\%	1,490	41\%	999	27\%	3,669	3,160	25	54	79	± 5	67	± 4	37
2011	33,597	93	480	573	27\%	895	42\%	683	32\%	2,151	3,105	10	54	64	± 5	76	± 6	47
2012	29,874	82	253	335	26\%	567	44\%	376	29\%	1,278	3,040	14	45	59	± 7	66	± 7	42
2013	27,293	101	294	395	23\%	803	47\%	498	29\%	1,696	2,059	13	37	49	± 5	62	± 6	42

Hunt Area	Type	Dates of Seasons		Quota	Limitations
		Opens	Closes		
25	1	Oct. 1	Oct. 14	600	Limited quota licenses; any antelope
	6	Oct. 1	Oct. 14	200	Limited quota licenses; doe or fawn
26	1	Sep. 24	Oct. 14	900	Limited quota licenses; any antelope
	6	Sep. 24	Oct. 14	400	Limited quota licenses; doe or fawn
Archery		Aug. 15	Sep. 30		Refer to license type and limitations in Section 2

Hunt Area	Type	Quota change from 2013
25	1	-300
	6	-300
26	1	-300
	6	-400
Herd Unit Total	$\mathbf{1}$	$\mathbf{- 6 0 0}$
	$\mathbf{6}$	$\mathbf{- 7 0 0}$

Management Evaluation

Current Postseason Population Management Objective: 28,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~28,000
2014 Proposed Postseason Population Estimate: ~24,900

Herd Unit Issues

The North Converse Pronghorn Herd Unit has a post-season population objective of 28,000 pronghorn. This herd is managed under the recreational management strategy, with a goal of maintaining preseason buck ratios between 30-59 bucks per 100 does. The objective and management strategy were last revised in 1989, and are scheduled for revision in 2015.

Public hunting access within the herd unit is poor, with only small tracts of accessible public land interspersed within predominantly private lands. Two Walk-In Areas provide some additional hunting opportunity, although they are relatively small in size. Primary land uses in this herd unit include extensive oil and gas production, large-scale industrial wind generation, In-

Situ uranium production, and traditional cattle and sheep grazing. In recent years, expansion of oil shale development has dramatically escalated anthropogenic disturbance throughout this herd unit. The cumulative impacts on pronghorn from the increased natural resource development in this area are unknown but potentially significant.

Weather

Weather conditions throughout 2012 and into 2013 were extremely dry and warmer than normal. The winter of 2012-2013 was mild, although the 2013-14 winter has been moderate to date with substantial precipitation and multiple sub-zero cold snaps. However, warm conditions often occurred in between the severe cold snaps which served to melt out lowlands and expose forage for wintering pronghorn. An extremely large snowstorm occurred in early October of 2013 and produced two to three feet of snow in most areas. This storm (Winter Storm "Atlas") did not likely impact pronghorn survival as it melted rapidly. However, it may have significantly impeded harvest success in some portions of this herd unit as the storm coincided with the first week of the hunting season in Area 25. In general, winter survival was thought to be normal over the last bio-year. However, the extraordinary drought of 2012 resulted in pregnant females entering the 2012-2013 winter in poor condition, which was perhaps the most significant driver behind the relatively poor fawn production realized in 2013. Fortunately, growing season moisture was markedly improved in 2013, which should benefit pronghorn, especially pregnant females, through the 2013-2014 winter.

Habitat

Although there are no habitat transects in this herd unit, habitat conditions were exceptionally poor through 2012 due to the extreme drought. This was the driest year on record in most of Wyoming. Fortunately, growing season and summer/fall moisture was improved in 2013 which allowed these rangelands to begin recovery. Given the reduced number of pronghorn currently within this herd unit, which will result in reduced herbivory, habitat conditions should begin to improve. However, several consecutive years of improved precipitation will be needed to more completely rejuvenate habitats and provide better conditions for the long-term productivity of this pronghorn herd.

Field Data

It has been increasingly difficult to meet classification sample sizes in this herd unit as it is no longer a budget priority for aerial surveys. Total number of animals classified has markedly decreased since aerial surveys were eliminated in 2011. In 2013, the adequate sample size was 2,100 animals, yet only 1,696 pronghorn were classified with intensive ground coverage.

Overall, fawn production/survival has remained fairly consistent in this herd unit, although the 2013 ratio of 62 was well below the 5 -year average of 71 . It should be noted that preseason fawn ratios are typically higher in this herd compared to all other adjacent herd units. This is thought to be attributed to intensive predator control efforts that are sustained throughout much of this herd unit due to widespread domestic sheep production. However, despite relatively higher preseason fawn ratios being observed in this herd unit, overall population trend has declined in this herd to nearly the same extent as adjacent herds. This suggests that while over-summer
fawn survival seems to be elevated in this herd, over-winter fawn survival is likely poorer compared to surrounding herds.

Preseason buck ratios declined considerably in 2013 (49 per 100 does), although they remain in line with management strategy criteria. The 2013 ratio was 38% lower than the previous 5 -year average of 68 . However, in most years, preseason buck ratios have been well above the management strategy maximum, which is a function of limited access due to the preponderance of private land and widespread outfitting. The 2013 buck ratio is the lowest on record for this herd since 1991. The noticeable decline in buck ratios further indicate this population has declined significantly in recent years.

Harvest

Overall harvest has declined precipitously in this herd unit as license issuance has decreased in lieu of population decline. The 2013 total harvest of 2,268 was the lowest total pronghorn harvest obtained in this herd unit since 2006. License success in 2013 (77\%) also declined significantly compared to the previous 5 -year average of 88%. This is the lowest license success this herd has experienced since 1995. In 2013, all license types were sold by the close of the season despite 2,126 (out of 3,400 issued) being available for leftover sales after the drawing. In addition, the days required to harvest an animal has been steadily climbing over the last few years. In 2013, hunters experienced an increased number of days per animal (4.0), which was somewhat higher than the preceding 5 year average of 3.6 days/animal.

In 2013, 79\% of hunters reported being either satisfied or very satisfied with their hunt, indicating a remarkably high level of satisfaction given the lack of public access and population decline. It should be noted that most hunters who speak to Game and Fish personnel are advised to secure access on private land before purchasing a license in areas that have limited public access.

Population

The 2013 post-season population estimate is approximately 28,000, which is at objective. This herd has the potential for rapid growth as has been seen in years past. High fawn productivity coupled with limited access has allowed this herd to exceed the objective very readily. However, this population dropped to objective in the last year and is predicted to continue to decline. As such, the reduction in licenses was warranted for 2014 to manage this herd near objective. This herd began to decline following elevated mortality during the relatively severe 2010-2011 winter. Subsequent poor fawn recruitment has further suppressed this herd. The last line transect survey was conducted in this herd unit in May of 2013, which resulted in an estimated end-of-year population of 27,200 pronghorn (Appendix A).

The "Time Specific Juvenile - Constant Adult" (TSJ-CA) spreadsheet model was chosen for the post-season population estimate of this herd. All three models had very similar relative AIC values. The TSJ-CA model most accurately represented population trend based on field personnel and landowner perceptions. This model is considered to be of fair quality as it tracks through a recent Line Transect end-of-year estimate for bio-year 2012 and tracks well with observed preseason buck ratios.

Management Strategy

The traditional season in this herd unit has ran from October $1^{\text {st }}$ to October $14^{\text {th }}$ in Hunt Area 25 and from September $24^{\text {th }}$ to October $14^{\text {th }}$ in Hunt Area 26. These season dates have typically been adequate to meet landowner desires while accommodating a reasonable harvest. For 2014, both Type 1 and Type 6 license issuance was decreased by 600 and 700, respectively. These reductions were warranted to decrease harvest pressure on both males and females given this population is predicted to decline below objective over the next year. However, given the current size of this population, managers felt pronghorn numbers were sufficiently high to warrant some level of continued doe/fawn harvest. If we attain the projected harvest of $\sim 1,785$ individuals and realize normal fawn recruitment, this pronghorn population is projected to decrease to about 24,800 pronghorn, which is 11% below objective.

Appendix A:

North Converse Pronghorn Line Transect Survey Bio-Year 2012 - Results and Histogram

Effort: $\quad 906.9438$
\# samples: 57
Width: 206.0000
Left: $\quad 0.0000000$
\# observations: 480
Model 1
Hazard Rate key, $\mathrm{k}(\mathrm{y})=1-\operatorname{Exp}\left(-(\mathrm{y} / \mathrm{A}(1))^{* *}-\mathrm{A}(2)\right)$

Parameter	Point Estimate	Standard Error	Percent Coef. of Variation	95% Confidence Interval	
DS	7.2787	0.93255	12.81	5.6593	9.3615
E(S)	1.4730	$0.35594 \mathrm{E}-01$	2.42	1.4047	1.5446
D	10.721	1.3978	13.04	8.3001	13.848
N	27242	3551.8	13.04	21091	35189

Measurement Units
Density: Numbers/Sq. miles
ESW: meters

Component Percentages of $\operatorname{Var}(\mathrm{D})$

Detection probability:	62.6
Encounter rate:	33.9
Cluster size:	3.4

Estimation Summary: Encounter Rates

	Estimate	\% CV	DF	95% Confidence Interval	
n	480.00				
k	57.000				
L	906.94				
n / L	0.52925	7.59	29.00	0.45321	0.61805
Left	0.0000				
Width	206.00				

Estimation Summary: Detection Probability
Hazard/Polynomial

	Estimate	\% CV	DF	95% Confidence Interval	
m	2.0000				
LnL	-768.50				
AIC	1541.0				
AICc	1541.0				
BIC	1549.4				
Chi-p	$0.70880 \mathrm{E}-01$				
f(0)	$0.85456 \mathrm{E}-02$	10.32	478.00	$0.69811 \mathrm{E}-02$	$0.10461 \mathrm{E}-01$
p	0.56805	10.32	478.00	0.46406	0.69536
ESW	117.02	10.32	478.00	95.596	143.24

Estimation Summary - Expected Cluster Size
Estimate

Average cluster size	\%CV	df	95% Confidence Interval	
1.5708	3.73	479.00	1.4600	1.6901

Hazard/Cosine

	Estimate	\% CV	DF	95\% Confidence Interval	
r	$-0.34019 \mathrm{E}-01$				
r-p	0.22856				
E(S)	1.4730	2.42	478.00	1.4047	1.5446

Estimation Summary - Density \& Abundance

	Estimate	\% CV	DF	95\% Confidence Interval	
D	7.2787	12.81	194.63	5.6593	9.3615
DS	10.721	13.04	208.62	8.3001	13.848
N	27242	13.04	208.62	21091	35189

[^0]: ${ }^{1}$ Different technique applied to measure utilization in 2007. Results may not be directly comparable to previous years.

[^1]: ${ }^{2} 2014$ Revised model estimate for 2006 (not recorded in JCR database)

