TABLE OF CONTENTS

Acknowledgement ii
Antelope
Cheyenne River (740) - Areas 4-9, 27, 29 1
Rattlesnake (745) - Areas 70-72 21
North Natrona (746) - Area 73 35
North Converse (748) - Areas 25, 26 51
Mule Deer
Cheyenne River (740) - Areas 7-14, 21 67
Black Hills (751) - Areas 1-6 83
North Converse (755) - Area 22 $9]$
South Converse (756) - Area 65 $11 \square$
Bates Hole - Hat Six (757) - Areas 66, 67 120
Rattlesnake (758) - Areas 88, 89 $14 \square$
North Natrona (759) - Area 34 150
White-tailed Deer
Black Hills (706) - Areas 1-6 10
Central (707) - Areas 7-15, 21, 22, 34, 65-67, 88, 89 180
Elk
Black Hills (740) - Areas 1, 116, 117 $19]$
Laramie Peak / Muddy Mountain (741) - Areas 7, 19 $20 \square$
Rattlesnake (742) - Area 23 $20 \square$
Pine Ridge (743) - Area 122 $24 \square$

Acknowledgement

The field data contained in these reports was collected by the combined efforts of the Casper Region Wildlife Division personnel including District Wildlife Biologists, District Game Wardens, the Wildlife Technicians, the Habitat Biologist, the Wildlife Management Coordinator and Region Supervisor, and other Department personnel and volunteers working at check stations. The authors wish to express their appreciation to all those who assisted in data collection.

2013 - JCR Evaluation Form

Population Size - Postseason

\square PR740 - POPULATION - PR740-OBJECTIVE

Harvest

Number of Hunters

Harvest Success
\square PR740 - Hunter Success \% PR740-Active License Success

Active Licenses

\square PR740 - Active Licenses

Days Per Animal Harvested
\square PR740 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary
for Pronghorn Herd PR740-CHEYENNE RIVER

		MALES				FEMALES		JUVENILES		Tot Cls	Cls Obj	Males to $\mathbf{1 0 0}$ Females				Young to		
Year	Pre Pop	YIg	Adult	Total	\%	Total	\%	Total	\%			YIng	Adult	Total	Conf Int	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	51,650	601	1,081	1,682	27\%	2,950	47\%	1,630	26\%	6,262	1,982	20	37	57	± 3	55	± 3	35
2009	48,838	395	1,101	1,496	25\%	2,757	46\%	1,802	30\%	6,055	2,429	14	40	54	± 3	65	± 3	42
2010	42,854	411	1,054	1,465	29\%	2,345	46\%	1,309	26\%	5,119	2,261	18	45	62	± 3	56	± 3	34
2011	39,597	208	695	903	23\%	1,796	45\%	1,258	32\%	3,957	2,624	12	39	50	± 3	70	± 4	47
2012	29,709	202	462	664	21\%	1,513	48\%	960	31\%	3,137	2,156	13	31	44	± 3	63	± 4	44
2013	29,868	169	542	711	22\%	1,510	47\%	1,006	31\%	3,227	2,384	11	36	47	± 3	67	± 4	45

2014 HUNTING SEASONS

CHEYENNE RIVER PRONGHORN HERD (PR740)

Hunt Area	Season Dates				Limitations
	Type	Opens	Closes	Quota	
4	1	Oct. 1	Nov. 20	100	Limited quota licenses; any antelope
	6	Oct. 1	Nov. 20	25	Limited quota licenses; doe or fawn
5	1	Oct. 1	Nov. 20	100	Limited quota licenses; any antelope
	6	Oct. 1	Nov. 20	50	Limited quota licenses; doe or fawn valid on private land
6	1	Oct. 1	Oct. 15	350	Limited quota licenses; any antelope also valid in Area 8
7	1	Oct. 1	Oct. 15	300	Limited quota licenses; any antelope
8	1	Oct. 1	Oct. 15	450	Limited quota licenses; any antelope also valid in Area 6
9	1	Oct. 1	Oct. 31	600	Limited quota licenses; any antelope also valid in that portion of Area 11 in Converse or Niobrara counties
	6	Oct. 1	Oct. 31	650	Limited quota licenses; doe or fawn also valid in that portion of Area 11 in Converse or Niobrara counties
27	1	Oct. 1	Oct. 15	300	Limited quota licenses; any antelope
	7	Oct. 1	Oct. 15	75	Limited quota licenses; doe or fawn valid on private land

Hunt Area	Season Dates				Limitations
	Type	Opens	Closes	Quota	
29	1	Oct. 1	Oct. 15	100	Limited quota licenses; any antelope
	2	Oct. 1	Oct. 15	500	Limited quota licenses; any antelope valid on private land
	6	Oct. 1	Oct. 15	100	Limited quota licenses; doe or fawn valid on private land
	7	Oct. 1	Nov. 15	100	Limited quota licenses; doe or fawn valid south and west of Interstate Highway 25
Archery 4 \& 5		Sep. 1	Sep. 30		Refer to license type and limitations in Section 2.
Archery 6-9, 27 \& 29		Aug. 15	Sep. 30		Refer to license type and limitations in Section 2.

SUMMARY OF CHANGES IN LICENSE NUMBER

Hunt Area	License Type	Quota change from 2013
7	1	-50
7	6	-25
9	1	-100
9	6	-600
27	1	-100
27	6	-150
27	7	+75
29	1	-50
29	2	-50
29	6	-100
29	7	-100
Herd	$\mathbf{1}$	$\mathbf{- 3 0 0}$
Unit	$\mathbf{2}$	$\mathbf{- 5 0}$
Total	$\mathbf{6}$	$\mathbf{- 8 7 5}$
	$\mathbf{7}$	$\mathbf{- 2 5}$

Management Evaluation

Current Postseason Population Management Objective: 38,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 26,500
2014 Proposed Postseason Population Estimate: ~ 27,000
Herd Unit Issues: The management objective of the Cheyenne River Pronghorn Herd Unit is for an estimated post-season population of 38,000 pronghorn. This herd is managed under the recreational management strategy. The population objective and management strategy were set in 1999 when this herd was created by combining the South Black Hills and Thunder Basin Pronghorn Herd Units. This objective is currently under review, and consideration is being given to combining this herd with the Highlight Pronghorn Herd Unit (PR316).

The Cheyenne River Pronghorn herd unit encompasses much of northeastern Wyoming. Because of the disparity of habitats across the herd unit and the preponderance of private land, this herd unit is managed for recreational hunting. The herd unit encompasses $7,466 \mathrm{mi}^{2}$, of which $6,443 \mathrm{mi}^{2}$ is considered occupied pronghorn habitat. Most of the unoccupied habitat is found in Hunt Areas (HA's) 4 and 5, which include a portion of the Black Hills having topographical and vegetative features unsuitable for pronghorn. Approximately 77% of this herd unit is private land. The remaining 23% includes lands managed by the United States Forest Service (USFS), the Bureau of Land Management (BLM), and the State of Wyoming. Most of the occupied USFS lands are part of the Thunder Basin National Grassland (TBNG) and located in HA’s $5,6,7,27$, and 29, with HA 27 containing the largest amount. The State of Wyoming owns a large parcel of land in HA 9. Remaining public lands are scattered throughout the herd unit, and most are not accessible to the public. Access fees for hunting are common on private land, and many landowners have leased their property to outfitters. Therefore, accessible public lands are subjected to disproportionately heavy hunting pressure.

Major land uses in this herd unit include livestock grazing, oil and gas production, timber harvest, and farming. There are several oil and gas fields which occur primarily in HA's $6,7,8$, and 29, and development pressure has increased in recent years in HA's 8 and 29. Two surface coal mines represent a substantial land use within HA 27. Farming generally occurs in the southern most portion of the herd unit, but there are a number of wheat, oat, and alfalfa fields near Sundance and Upton. When pronghorn numbers are high, damage to growing alfalfa can become an issue.

Weather: The winter of 2010-11 was very harsh in the northern half of the herd unit. Overwinter mortality was well above average and losses of all ages of pronghorn continued into the spring. During this winter, large scale movements of pronghorn were also observed. Warmer and drier conditions beset the area during the end of bio-year 2011 and continued through the 2012-13 winter, with the 2012 summer being the driest on record in many places. April of 2013 finally saw a break in the drought when temperatures dropped below normal for the entire month, and significant precipitation was again received. This wetter and cooler pattern continued through the summer of 2013. In early October 2013, a winter storm "Atlas" blanketed the herd unit with 12 " to nearly 36 " of wet snow in some locations and drifts exceeding 6 -feet. While no significant level of pronghorn mortality was detected due to this storm, the snow and
resultant muddy conditions forced the cancellation of hunting for some license holders, and made accessing pronghorn difficult in many locations. Towards the end of the hunting seasons, travel conditions improved, but it was apparent winter storm Atlas negatively impacted hunter participation and hampered hunter success. The early winter months of bio-year 2013 brought temperature and precipitation conditions near the recent 30-year average. For detailed weather data see http://www.ncdc.noaa.gov/cag/time-series/us.

Habitat: The herd unit is dominated by Wyoming big sagebrush (Artemesia tridentata wyomingensis), silver sagebrush (Artemesia cana), and mid-prairie grasses such as wheatgrasses (Agropyron spp.), grama grasses (Bouteloua spp.), and needle grasses (Stipa spp.). In addition, there are several major drainages dominated by plains cottonwood (Populus deltoides) and greasewood (Sarcobatus vermiculatus). These drainages include the Cheyenne River, Antelope Creek, Black Thunder Creek, Beaver Creek, Old Woman Creek, Hat Creek, and Lance Creek. Steep canyons dominate the southern Black Hills portion of the herd unit, and there vegetation consists of ponderosa pine (Pinus ponderosa) and its associated savannah. Some areas are dominated by agricultural croplands, notably near the towns of Douglas, Lusk, Upton, and Sundance.

Habitat suitability for pronghorn varies greatly throughout the herd unit. Much of the habitat in the northeast portion of the herd unit is marginal, consisting of topography and vegetation not particularly suitable for pronghorn. The west-central portions of the herd unit represent the best block of contiguous sagebrush habitat. While the eastern and southern sections of the herd unit are dominated more by mid-grass prairie and agricultural lands, but locally do support good numbers of pronghorn. Habitat disturbance throughout the herd unit is generally high. There are a number of developed oil fields and areas impacted by bentonite and coal mining. In the central and southern portions of the herd unit, historic sagebrush control projects have decreased the amount of sagebrush available for wintering pronghorn at many sites. Yet, pronghorn still winter in this region. Habitat loss and fragmentation is expected to continue and negatively impact this herd. Based upon current exploration and leasing trends, the amount of disturbance caused by mining, and oil \& gas activities will continue to increase in HA’s 8, 27 and 29. In addition, a large wind farm is planned in HA 29.

Beginning in the fall of 2001, Department personnel established Wyoming big sagebrush monitoring transects within the herd unit. Forage conditions away from irrigated fields within this herd unit were poor between 2001 and 2004, improved substantially in 2005, and then declined dramatically during 2006, when severe drought plagued the herd unit. Based on these transects, forage conditions rebounded in 2007, and remained good in 2008 and 2009. Leader production measurements were suspended in 2010, but over-winter estimates of use continued through 2011. As previously mentioned, sagebrush leader growth improved in 2007, however, the post-season population of this herd peaked that year and winter use of sagebrush leaders was excessive. ${ }^{1}$ It was apparent the population of pronghorn and other animals (notably cotton-tailed rabbits) browsing sagebrush at that time was not sustainable. Increased harvest along with reduced recruitment and survival began to push this pronghorn population down. As this herd declined, winter use of sagebrush dropped and range conditions improved through 2011. Then, the severe drought of 2012 resulted in very poor forage production and elevated use during and

[^0]after the growing season. Neither sagebrush production nor utilization was measured in 2013. However, a very wet spring and summer were experienced during 2013, and there were low numbers of pronghorn on the range. Consequently, casual observations of range conditions showed excellent leader growth and reduced winter use.

Field Data: This population's recent decline was accentuated during the winter of 2010-2011 and subsequent drought of 2012. Drought in 2012 negatively impacted fawn survival, and the fawn:doe ratio decreased to 62:100. During 2013, fawn production and survival again were reduced, and late summer losses to Epizootic Hemorrhagic Disease (EHDV) observed. The 2013 observed fawn:doe ratio was 67:100 and adequate sample sizes for each hunt area were attained. While considered low for pronghorn, this value was 8% above the previous five-year average (62:100), but still 7\% below the long-term average of 72:100.

Over the last 30^{+}years annual productivity of this herd, as measured by preseason fawn:doe ratios, has generally declined (Figure 1). This is thought to be the result of a reduction in habitat quantity and quality, intensified by drought, plant succession, aging of sagebrush, and overbrowsing from both domestic livestock and wildlife. However, productivity was fairly stable and generally good between 1998 and 2006 (avg. 78; std. dev. 6.3). A situation credited to mild winters persisting during intensifying drought, even though this population was estimated to be above objective most years. However, as this population moved more significantly above objective beginning in 2005 and drought continued, fawn:doe ratios began to decline. This trend continued through 2008. During this time frame severe snow storms plagued the herd unit each April and May. In addition, June weather each year was cooler and wetter than normal. While this precipitation provided a much-needed boost for rangeland health, the combination is believed to have increased post-season mortality of adults and reduced survival of fawns. Predation of fawns may have also increased during this time as well, as small animal populations dropped throughout the herd unit. Since 2008 the herd's preseason fawn:doe has trended upwards slightly, but has averaged only 63 fawns per 100 does (std. dev 6.0). This has translated

Figure 1: Observed Annual, and Recent Five-Year Average Fawn:Doe Ratios (1980-2013).
into a continued population decline, even as hunting seasons became more conservative.
As this population rose between 2002 and 2006, preseason buck:doe ratios fluctuated, but generally increased. Between 2007 and 2012, preseason buck:doe ratios generally declined, as this population dropped and the relative percentage of bucks harvested from the population increased annually. The population model simulates an increase in buck ratios from 48:100 in 2002 to a peak of 60:100 in 2007 and a subsequent decline back to $48: 100$ in both 2012 and 2013, a value projected to continue into 2014. This preseason value of 48 bucks per 100 does is near the midpoint of the Department's recreational management criteria.

Small changes in female mortality rates can greatly affect observed male:female ratios (Bender 2006). Historic fluctuations in observed buck:doe ratios in some hunt areas may have been influenced as much by changes in female survival as by buck harvest, at least in hunt areas where we have no difficulty increasing doe harvest, such as HA 27 and portions of HA's 7, 9, and 29. This may explain the wide variation in observed buck:doe ratios within the herd unit between some years. As Bender (2006) states, managers should consider the significant influence small changes in female mortality rates have on observed male:female ratios when managing male escapement from harvest in ungulate populations.

Harvest Data: Since 2008 hunter success has dropped and effort has generally continued to increase. In 2013, most hunt areas exhibited low success compared to what is normally observed for pronghorn within the state and this herd unit. Active license success on doe/fawn tags ranged from 60% in HA 29 to 76% in HA's $5 \& 27$. Type 1 active license success varied from 63% in HA 8 to 89% in HA 6. Herd unit wide, active license success was 67% on doe/fawn tags and 77% on type $1 \& 2$ licenses. Again, winter storm "Atlas" impacted the entire herd unit during the first week of October, with snow and mud lingering through the hunting season. This resulted in some hunters cancelling planned trips, as the percentage of active licenses fell about ten to fifteen percent from historical values. Additionally, the weather and associated travel conditions likely reduced active license success. Although hunter success has dropped recently, the hunter satisfaction survey revealed herd unit-wide 40% of hunters were very satisfied, and 37% satisfied with their hunt in 2012; and similar values were reported in 2013, with 39% of hunters stating they were very satisfied, and 38% satisfied with their hunt.

Population: Following inclusion of line transect and harvest data collected in 2013, the modeled 2013 post-season population estimate was about 26,500. The revised model significantly lowered estimated populations for the previous 5 -years. Consequently, pre and post season population estimates in the JCR database were updated for bio-years 2008 through 2013. This population had been trending downwards each year since peaking at about 51,000 pronghorn in 2006^{2}. The recent line transect survey was conducted in June 2013, and resulted in an end of 2012 bio-year population estimate of 20,400 (Appendix 1). This was a notable reduction from the 2011 line transect estimate of 30,900 . This population was generally stable near objective between 1993 and 2002. The population then increased rapidly through 2006 as fawn survival was very good, with observed preseason fawn:doe ratios averaging 80:100 between 2002 and 2006. This, coupled with our inability to sell all doe/fawn licenses, made controlling the population difficult. Since then, a reduction in price of doe/fawn licenses, the

[^1]ability for hunters to possess up to four of them, internet license sales, and enrollment of private lands in our PLPW program substantially increased our ability to affect doe/fawn harvest. Between 2007 and 2012 this population dropped significantly in the wake of increased female harvest, reduced fawn recruitment, and increased non-hunting mortality of adults.

As previously mentioned, this population's recent decline, while driven by increased mortality and reduced recruitment, was exasperated by above normal winter and spring mortality in bioyear 2010. In addition to lower fawn production and survival in bio-year 2013, late summer losses of all age classes to Epizootic Hemorrhagic Disease (EHDV) were observed. It is also suspected, although not confirmed, that pronghorn mortality was increased in late summer and early fall both of the previous two bio-years due to EHDV as well.

The "Semi Constant Juvenile \& Semi Constant Adult" (SCJ SCA) spreadsheet model was chosen to estimate this herd's population. All three competing models simulate a population rise between 2002 and 2006 or 2007 (TSJ CA), followed by a decline through 2012 and leveling off to slight increase in 2013. However, the SCJ SCA model exhibited the lowest AICc value. The magnitude of trends produced by SCJ SCA model also dovetail well with trends in harvest statistics and the perceptions of local game managers, landowners, and hunters; and amongst competing models it tracks observed data (including recent LT estimates) very well. The SCJ SCA model was also chosen because, along with the lowest AICc, all three competing models produced post-season population estimates for both 2012 and 2013 that were within about 10\% of each other. This model functions well because it allows for modeling the increased mortality observed during the severe winters of 2000-2001 and 2010-2011.

Management Summary: The 2012 and 2013 hunting seasons were conservative in this herd unit, and changes for the 2014 season entail continuing and augmenting this same strategy. Doe/fawn harvest has been significantly reduced or eliminated in all hunt areas. Additionally, issuance of any antelope tags was curtailed somewhat to maintain buck:doe ratios at their current level. The largest reductions in harvest should occur in HA's 9, 27, and 29, where most doe/fawn harvest has continued to date. In HA 9, claims for damage from pronghorn are no longer being submitted, and landowners have noted a drop in pronghorn numbers. In HA 29, in response to complaints from landowners and hunters on public land about low pronghorn numbers, last year a type 2 (any antelope) license valid on private land only was issued, while type 1 license numbers were greatly reduced. Here, issuance of type 6 tags was also reduced and were restricted to private land in 2013. These changes were well received by many of the landowners and significantly reduced harvest pressure on public lands in the northern part of HA 29 where pronghorn numbers have plummeted.

Concerns remain about low pronghorn numbers on public lands, notably the TBNG in both HA's $29 \& 27$. To help address this, reduced priced doe/fawn tags available for HA 27 have been confined in validity to private land via a new type 7 tag, while the type 6 tags have been eliminated. In addition, issuance of type 1 (any antelope) licenses was reduced 25\% in HA 27, an area where residents hold 80% of the licenses, draw odds for non-residents are some of the most difficult in the state, and most of the hunting occurs on public land. Here, active type 1 license success has remained below 80% for two years in a row, and the percentage of residents
reporting they were satisfied or very satisfied with their hunt fell from 89% in 2011 to 64% in 2012, and remained similar in 2013 at 68\%.

Finally, to address landowner concerns along the boundary of HA's 6 and 8, a change in license limitations allowing hunters with HA 6 tags to hunt in HA 8 and vice versa has been enacted. The east-west boundary between these hunt areas consists of county roads, which antelope frequently cross. Landowners whose properties straddle this boundary have over the years requested ability for hunters to hunt both sides of these roads. Because landownership patterns are similar in both hunt areas, the Department felt we could try this approach for a couple years, which if successful could lead to a combining of hunt areas and regulation simplification in the future.

Given average fawn:doe and buck:doe ratios observed the past 5-years and consistent survival rates, combined with a predicted harvest of 2,780 pronghorn, the 2014 hunting season should allow the post-season population of this herd to grow about 2\%, to 27,000 pronghorn.

Literature Cited:

Bender, Louis C. 2006. Uses of herd composition and age ratios in ungulate management. Wildlife Society Bulletin. Vol. 34 (4): 1225-1230.

INPUT	
Species:	Pronghorn
Biologist:	Joe Sandrini
Herd Unit \& No.:	Chey. River PR740
Model date:	$01 / 27 / 14$

\qquad

	MODELS SUMMARY	Fit	Relative AICc	Check best model to create report	Notes
CJ,CA	Constant Juvenile \& Adult Survival	166	175	$\square \mathrm{cl}, \mathrm{CA}$ Model	
SCJ,SCA	Semi-Constant Juvenile \& Semi-Constant Adult Survival	131	151	-sq, SCA	
TSJ,CA	Time-Specific Juvenile \& Constant Adult Survival	64	171	\square TSJ, CA Model	


```
(1)
```

An
An

Annual Field Est
Annual Field Est

Appendix 1
PR 740 Line Transect Results
End of Bio-Year 2012

Effort: $\quad 2785.763$
\# samples: 96
Width: 213.5000
Left: $\quad 0.0000000$
\# observations: 306
Model 1
Half-normal key, $\mathrm{k}(\mathrm{y})=\operatorname{Exp}\left(-\mathrm{y}^{* *} 2 /\left(2^{*} \mathrm{~A}(1)^{* *} 2\right)\right)$

Parameter	Point Estimate	Standard Error	Percent Coef. Of variation	95 \% Confidence Interval	
DS	1.9853	0.17117	8.62	1.6744	2.3540
E(S)	1.5981	$0.57992 \mathrm{E}-01$	3.63	1.4880	1.7164
D	3.1728	0.29679	9.35	2.6389	3.8147
N	20442.	1912.2	9.35	17002.	24578.

Measurement Units
Density: Numbers/Sq. miles ESW: meters
Component Percentages of $\operatorname{Var}(\mathrm{D})$
Detection probability: 341
Encounter rate: $\quad 50.8$
Cluster size: 15.0
Estimation Summary - Encounter rates

	Estimate	\%CV	df	95%	Confidence Interval
n	306.00				
k	96.000				
L	2785.8				
n / L	0.10984	6.67	48.00	$0.96076 \mathrm{E}-01$	0.12559
Left	0.0000				
Width	213.50				

Estimation Summary - Detection probability
Half-normal/Cosine

	Estimate	\%CV	df	95\% Confidence Interval	
m	1.0000				
LnL	-479.57				
AIC	961.13				
AICc	961.15				
BIC	964.86				
Chi-p	0.25585				
f(0)	$0.69785 \mathrm{E}-02$	5.47	305.00	$0.62674 \mathrm{E}-02$	$0.77702 \mathrm{E}-02$
p	0.67119	5.47	305.00	0.60280	0.74733
ESW	143.30	5.47	305.00	128.70	159.56

Estimation Summary - Expected cluster size
Estimate

Average cluster size	\%CV	df	95\% Confidence Interval	
1.7778	5.87	305.00	1.5840	1.9953

Half-normal/Cosine

	Estimate	\%CV	df	95\% Confidence Interval	
r	$0.60850 \mathrm{E}-01$				
r-p	0.14433				
E(S)	1.5981	3.63	304.00	1.4880	1.7164

Estimation Summary - Density \& Abundance
Half-normal/Cosine

	Estimate	\%CV	df	95% Confidence Interval	
D	1.9853	8.62	125.25	1.6744	2.3540
DS	3.17828	9.35	171.34	2.6389	3.8147
N	20,442	9.35	171.34	17,002	24,578

Pronghorn - Cheyenne River
Hunt Areas 4, 5, 6, 7, 8, 9, 27, \& 29
Casper Region

2013 - JCR Evaluation Form

SPECIES: Pronghorn		PERIOD: 6/1/2013-5/31/2014	
HERD: PR745 - RATTLESNAKE			
HUNT AREAS: 70-72		PREPARED BY: HEATHER	

Population Size - Postseason \square PR745-POPULATION - PR745-OBJECTIVE

Harvest

Number of Hunters

Harvest Success
\square PR745 - Hunter Success \% PR745 - Active License Success

Active Licenses

Days Per Animal Harvested
\square PR745 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary
for Pronghorn Herd PR745-RATTLESNAKE

		MALES				FEMALES		JUVENILES		Tot Cls	Cls Obj	Males to 100 Females				Young to		
Year	Pre Pop	Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	$\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$	$\begin{array}{r} 100 \\ \text { Fem } \end{array}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	18,407	434	823	1,257	28\%	2,114	46\%	1,183	26\%	4,554	1,952	21	39	59	± 3	56	± 3	35
2009	18,269	330	954	1,284	30\%	1,951	46\%	1,027	24\%	4,262	2,276	17	49	66	± 3	53	± 3	32
2010	18,033	271	933	1,204	32\%	1,599	42\%	970	26\%	3,773	2,827	17	58	75	± 4	61	± 4	35
2011	12,938	195	683	878	27\%	1,607	50\%	721	22\%	3,206	1,616	12	43	55	± 3	45	± 3	29
2012	10,343	82	209	291	24\%	662	53\%	285	23\%	1,238	1,140	12	32	44	± 5	43	± 5	30
2013	9,268	45	199	244	20\%	624	50\%	381	31\%	1,249	1,901	7	32	39	± 5	61	± 6	44

2014 HUNTING SEASONS

RATTLESNAKE PRONGHORN HERD (PR745)

$\begin{aligned} & \text { Hunt } \\ & \text { Area } \end{aligned}$	Type	Date of Seasons		Quota	Limitations
		Opens	Closes		
70	1	Sep. 15	Oct. 31	100	Limited quota; any antelope
	6	Sep. 15	Nov. 30	100	Limited quota; doe or fawn antelope
71	1	Sep. 15	Oct. 31	100	Limited quota; any antelope
	6	Sep. 15	Oct. 31	50	Limited quota; doe or fawn antelope
72	1	Sep. 15	Oct. 31	400	Limited quota; any antelope
	6	Sep. 15	Oct. 31	100	Limited quota; doe or fawn antelope
Archery		Aug. 15	Sep. 14		Refer to license type and limitations in Section 2

Hunt Area	Type	Quota change from 2013
70	1	-100
	6	-100
71	1	-100
	6	-50
72	1	-200
	6	-100
Total	1	-400
	6	-250

Management Evaluation

Current Management Objective: 12,000
Management Strategy: Special
2013 Postseason Population Estimate: ~8,100
2014 Proposed Postseason Population Estimate: ~8,500

The Rattlesnake Pronghorn Herd Unit has a post-season population management objective of 12,000 pronghorn. The herd is managed using the special management strategy, with a goal of maintaining preseason buck ratios between $60-70$ bucks per 100 does. The objective and management strategy were last revised in 1988, and will be formally reviewed in 2015. A line transect survey will be conducted in May 2014 to be used in conjunction with the formal objective review.

Herd Unit Issues

The 2013 post-season population estimate was approximately 8,100 and trending slightly upward from 2012 estimates. This herd unit did not have a functional population model until 2012, when a spreadsheet-based modeling system replaced the program POP-II to simulate herd dynamics. Prior management decisions for this herd were made using a combination of classification data, harvest statistics, observations of field personnel, and comments from hunters and landowners regarding pronghorn numbers. Line transect surveys were also conducted in 1998, 2000, and 2003 to provide end-of-year population estimates. A subsequent line transect surveys conducted in 2007 was deemed unusable and discarded. The current model is considered to be of poor quality, as personnel believe there to be significant interchange between the Rattlesnake and Beaver Rim Herd Units. For this reason, managers will evaluate the utility of combining these two herd units in 2015.

Hunting access within the herd unit is moderate, with some large tracts of public land as well as walk-in areas and a hunter management area. Traditional ranching and grazing are the primary land use over the whole herd unit, with scattered areas of oil and gas development. Hunt Areas $70 \& 71$ are dominated by private lands. License issuance is typically maintained in Area 70 to address damage issues on irrigated agricultural fields. Periodic disease outbreaks (i.e. hemorrhagic diseases, Clostridium spp. infections) are possible in this herd and can contribute to population declines when environmental conditions are suitable. A small number of pronghorn in the herd were reported to have perished from Epizootic Hemorrhagic Disease (EHD) during the late summer of 2013. Samples sent to the Wyoming Vet Lab from neighboring hunt areas confirmed this. The extent to which pronghorn have been impacted by EHD in recent years is unknown, but is potentially more significant than managers realize.

Weather

The winter of 2010-2011 was severe throughout the herd unit, resulting in higher mortality of pronghorn across all age classes. Conditions were warm and dry for the herd unit in 2011 and shrub production was below average, resulting in poor nutrition of pronghorn entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 2011-2012 which likely had a negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Fawn survival over the severely dry summer and winter was low, as evidenced by low yearling buck ratios the following year. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013 in much of the herd unit. Heavy rains fell during the
second half of September 2013, making travel in much of the herd unit difficult to impossible. In early October 2013, winter storm "Atlas" blanketed the herd unit with 12-36" of wet snow. While no significant pronghorn mortality was detected as a result, the snow and resulting muddy conditions forced the cancellation of hunting for some license holders, and made accessing pronghorn difficult in many locations. Travel conditions improved toward the end of hunting seasons, but by then it was apparent winter storm Atlas had a negative impact on hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30 -year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

This herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse for pronghorn. Additionally, there are no comparable habitat transects in neighboring herd units to reference. Anecdotal observations and discussions with landowners in the region indicate that summer and winter forage availability for pronghorn was average in 2013. Herbaceous forage species were observed to be in better condition in 2013 compared to the severely dry 2012, and pronghorn appeared to more widely distributed across suitable habitat.

Field Data

Fawn ratios were high in this herd from 1998-2005, and the population grew markedly during this time period. However, license issuance was modest and the population grew above management control by harvest. Fawn ratios were moderate from 2006-2010, but pronghorn populations were already high by this time period. License issuance increased significantly every year from 2006-2011 in an attempt to curb high pronghorn numbers and reduce the herd toward objective. By 2011, environmental factors combined with low fawn production/survival and high harvest pressure had rapidly reduced this herd below objective. Harsh winter conditions in 2010-11 combined with severe drought in 2012 have since dropped this herd unit below management objective, and license issuance has become more conservative. Improved moisture and favorable weather conditions appeared to have helped fawn production and survival in 2013, as the fawn ratio improved to 61:100 following a low of 43:100 does in 2012.

Buck ratios for the Rattlesnake herd historically range from the mid 40s to mid 70s per 100 does. Buck ratios are most commonly in the upper 50s, just below the lower limit for special management. In more recent years, buck ratios have dropped to the mid-40s as a result of low fawn recruitment and high harvest pressure on a diminishing population. In 2013, the buck ratio for the Rattlesnake Pronghorn Herd reached a 22-year low of 39:100 does. While it can be difficult to maintain this herd within the range of special management due to differing
management strategies for Area 70 versus Areas 71 and 72, hunters have developed high expectations for buck numbers and quality within this herd. Managers thus plan to manage pronghorn to improve and maintain the buck ratio within special management parameters.

Harvest Data

License success in this herd unit is typically in the $90^{\text {th }}$ percentile. Success declined the last three years to the low $80^{\text {th }}$ percentile while hunter days increased, indicating pronghorn were more difficult for hunters to find and harvest. Despite drastic reductions in license numbers in 2012 and 2013, license success and hunter days remained mediocre and effort increased significantly as many hunters remarked that bucks were more difficult to find and of lower quality. While some of the low harvest success can be attributed to poor access due to muddy and/or snowy conditions, fawn production and buck ratios remain below average. Thus, managers will recommend further license reductions in 2014 with the goal of increasing buck ratios and population numbers overall.

Population

The "Time-Specific Juvenile Survival - Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen for the post-season population estimate of this herd. This model seemed most representative of the herd, as it selects for low juvenile survival in the years when managers agree that overwinter fawn survival was very poor - particularly in 2010-2012. The simpler models (CJ,CA and SCA,CA) select for higher juvenile survival rates across years, which does not seem feasible for this herd. All three models follow a trend that is plausible; however the CJ,CA model shows an extremely high buck harvest percentage in 2011, and the SCA,CA model shows a 2006 population peak that seems unrealistic. None of the three models track well with the three line transect estimates, but rather track in between them. While the AIC for the TSJ,CA model is the highest of the three, it is only due to year-by-year penalties on juvenile survival and is still well within one level of power in comparison to the AICs of the simpler models. The TSJ,CA model appears to be the best representation relative to the perceptions of managers on the ground and follows trends with license issuance and harvest success. A line-transect survey is scheduled for May 2014 and should help better align the model. Overall the current model is considered fair in quality as a representation of herd dynamics.

Management Summary

Traditional season dates in this herd unit run from September $15^{\text {th }}$ through October $31^{\text {st }}$, and through November $30^{\text {th }}$ for Area 70 Type 6 licenses. We recommend the same season dates for 2014, with a reduction of licenses in lieu of poor fawn production/survival and declining buck ratios. The 2014 season includes a total of 600 Type 1 and 250 Type 6 licenses. Goals for 2014
are to increase pronghorn numbers back towards objective, improve buck ratios consistent with special management strategy, and increase hunter success.

If the projected harvest of 750 pronghorn is achieved with fawn production/survival similar to the last few years, this herd will increase slightly in number. The predicted 2014 post-season population size for the Rattlesnake Pronghorn Herd is approximately 8,500 animals, which is 32% below objective.

	MODELS SUMMARY	Fit
	Relative AICc	
CJ,CA	Constant Juvenile \& Adult Survival	140
SCJ,SCA	Semi-Constant Juvenile \& Semi-Constant Adult Survival	149
TSJ,CA	Time-Specific Juvenile \& Constant Adult Survival	132

\section*{| | Population Estimates from Top Model | | | |
| :--- | :--- | :---: | :---: | :---: |
| | Predicted Prehunt Population (yeari) | Total | Predicted Posthunt Population (yeari) | Total |}

Antelope - Rattlesnake
Hunt Areas 70,71,72
Casper Region
Revised 4/88

2013 - JCR Evaluation Form

SPECIES: Pronghorn		PERIOD: 6/1/2013-5/31/2014
HERD: PR746 - NORTH NATRONA		
HUNT AREAS: 73		PREPARED BY: HEATHER

Population Size - Postseason

Harvest

Number of Hunters

Harvest Success
\square PR746 - Hunter Success \% PR746 - Active License Success

Active Licenses

Days Per Animal Harvested
\square PR746 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary

Year	Pre Pop	MALES				females		JUVENILES		Tot Cls	$\begin{aligned} & \mathrm{Cls} \\ & \text { Obj } \end{aligned}$	Males to 100 Females				Young to		
		Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{array}{r} 100 \\ \text { Fem } \end{array}$	$\begin{gathered} \text { Conf } \\ \text { Int } \end{gathered}$	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	13,024	245	380	625	30\%	972	46\%	508	24\%	2,105	2,056	25	39	64	± 5	52	± 4	32
2009	14,995	273	541	814	29\%	1,218	43\%	809	28\%	2,841	2,361	22	44	67	± 4	66	± 4	40
2010	13,905	172	392	564	28\%	932	46\%	552	27\%	2,048	1,988	18	42	61	± 5	59	± 5	37
2011	12,323	119	540	659	25\%	1,322	49\%	697	26\%	2,678	2,129	9	41	50	± 3	53	± 4	35
2012	10,798	127	190	317	23\%	713	53\%	327	24\%	1,357	1,843	18	27	44	± 5	46	± 5	32
2013	11,932	69	318	387	23\%	817	48\%	497	29\%	1,701	1,832	8	39	47	± 4	61	± 5	41

2014 HUNTING SEASONS

 NORTH NATRONA PRONGHORN HERD (PR746)| Hunt Area | Type | Date of Seasons | | Quota | Limitations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Opens | Closes | | |
| 73 | 1 | Sep. 15 | Oct. 31 | 800 | Limited quota; any antelope |
| | 6 | Sep. 15 | Oct. 31 | 100 | Limited quota; doe or fawn antelope |
| Archery | | Aug. 15 | Sep. 14 | | Refer to license type and limitations in Section 2 |

Hunt Area	Type	Quota change from 2013
73	1	No change
	6	No change
	7	-100, removed license type

Management Evaluation

Current Postseason Population Management Objective: ~ 9,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 11,250
2014 Proposed Postseason Population Estimate: ~ 11,400

The North Natrona Pronghorn Herd Unit has a post-season population management objective of 9,000 pronghorn. The herd is managed using the recreational management strategy, with a goal of maintaining preseason buck ratios between 30-59 bucks per 100 does. The objective and management strategy were last revised in 1987, and will be formally reviewed in 2014.

Herd Unit Issues

Hunting access within the herd unit is very good, with large tracts of public lands as well as walk-in areas available for hunting. The southeastern corner of the herd unit is the only area dominated by private lands. In this area, specific doe/fawn licenses have been added to address damage issues on irrigated agricultural fields in years when landowners agree to allow hunting access. The main land use within the herd unit is traditional ranching and grazing of livestock. Industrial scale developments, including oil and gas development, are limited and isolated within this herd unit. Periodic disease outbreaks (i.e. hemorrhagic diseases, Clostridium spp. infections)
can impact this herd and contribute to population declines when environmental conditions are suitable.

Weather

The winter of 2010-2011 was severe throughout the herd unit, resulting in higher mortality of pronghorn across all age classes. Conditions were warm and dry for the herd unit in 2011 and shrub production was below average, resulting in poor nutrition of pronghorn entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 2011-2012 which likely had a negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Fawn survival over the severely dry summer and winter was low, as evidenced by low yearling buck ratios the following year. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013 in much of the herd unit, though the northeastern portion of the unit continued to suffer very dry conditions. In early October 2013, winter storm "Atlas" blanketed the herd unit with 12-36" of wet snow. While no significant pronghorn mortality was detected as a result, the snow and resulting muddy conditions forced the cancellation of hunting for some license holders, and made accessing pronghorn difficult in many locations. Travel conditions improved toward the end of hunting seasons, but by then it was apparent winter storm Atlas had a negative impact on hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30-year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

Currently, this herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse for pronghorn. Additionally, there are no comparable habitat transects in neighboring herd units to reference. Through anecdotal observations and shrub monitoring for other big game species, it is believed that summer and winter forage availability for pronghorn was average in 2013, with the possible exception of areas in the northeast that remained dry. Several sagebrush transects will be established in April 2014, with the goal of evaluating utilization from pronghorn in time for the formal objective review. If data prove valuable from these transects, they will be maintained and developed permanently to monitor habitat condition and use by big game species.

Field Data

Fawn ratios were high in this herd from 2002-2005, and the population grew markedly during this time period. Fawn ratios were moderate to poor from 2006-2013, but the population continued to grow through 2009 as license issuance did not keep pace with herd growth. In 2010-2011, license issuance increased sharply to address high antelope numbers and reduce the herd toward objective. By 2012, higher license issuance was no longer necessary to control growth of the herd, and licenses were reduced. Hunter harvest, mortality from harsh winter conditions in 2010-2011, extremely poor fawn production/survival, and severe drought in 2012 has subsequently reduced this herd. License issuance was again reduced in 2013 to compensate for a declining population.

Buck ratios for the North Natrona Herd historically average in the mid-50s:100 does, though they exceeded recreational limits from 2007-2010, when ratios were in the 60s. Since then, buck ratios have dropped markedly each year along with the population as a whole, reaching a 15 -year low of 44 bucks per hundred does in 2012. The buck ratio improved slightly in 2013, with 47 bucks:100 does. This is still well within the target range for recreational management, and managers would like to keep buck ratios in this range. Ultimate management goals are to sustain high hunter satisfaction while continuing to offer exceptional opportunity and good drawing odds via recreational management.

Harvest Data

License success in this herd unit is typically in the $80-90^{\text {th }}$ percentile. However, in 2013 license success dropped to 72% for Type 1 licenses and 83% for Type 6 licenses. This sudden decline in license success was due in large part to limited access resulting from heavy snows and muddy road conditions. Rain and snow were prominent during the first half of the hunting season and greatly reduced access to pronghorn and harvest success within the herd unit. Despite this, hunter satisfaction increased from 82% in 2012 to 89% in 2013 , indicating that hunters were pleased with their hunt despite issues of poor weather and road conditions. In addition, there were no negative comments submitted from hunters in the harvest report for the North Natrona Herd Unit.

Population

The 2013 post-season population estimate was approximately 11,250 and trending upward after an estimated low in 2012 of 9,700 pronghorn. A line-transect survey was conducted in this herd unit in May 2013 and resulted in an end-of-bioyear population estimate of 11,083, with a standard error of $\pm 2,235$ (see Appendix A). The model estimate for end-of-year population size in 2013 is slightly below the confidence intervals for the 2013 line-transect survey.

The "Time-Specific Juvenile Survival - Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen to use for the post-season population estimate of this herd. This model seemed the most representative of the herd, as it selects for higher juvenile survival during the years when field personnel observed more favorable environmental and habitat conditions, particularly from 2003-2008. The simpler models (CJ,CA and SCJ,CA) select for a very low juvenile survival rate across years, which does not seem feasible for this herd. All three models follow a trend that seems representative for this herd unit. The three models each align partially to four line-transect estimates - each model aligning through some but not all line-transect estimates completely. However, the CJ,CA and SCJ,CA models estimate population peaks in 2009 that do not seem realistic compared to the perceptions of field personnel and landowners at that time. While the AIC for the TSJ,CA model is the highest of the three, it is only due to year-by-year penalties and is still well within one level of power in comparison to the AICs of the simpler models. The TSJ, CA model aligns with two of four line transect estimates, and is very close to the confidence intervals for the remaining two. The TSJ,CA model appears to be the best representation relative to the perceptions of managers on the ground, and follows trends with license issuance and harvest success. Overall the model is considered to be fair in representing dynamics of the herd.

Management Summary

Traditional season dates in this herd run from September $15^{\text {th }}$ through October $31^{\text {st }}$. Season dates will remain the same for 2014 , as will Type 1 license issuance. The 2014 season includes 800 Type 1 licenses, and 100 Type 6 licenses. The Type 7 licenses will be eliminated in 2014, as access on private lands in the southeast corner of the herd unit has been poor. Landowners that normally utilize the Type 7 license can still take hunters with a Type 6 license, should they have a need to control for agricultural damage. While fawn ratios and population growth rates have been below average in recent years, habitat conditions appeared to improve in 2013. Goals for 2014 are to maintain pronghorn numbers near objective, maintain buck ratios, and increase hunter success.

If we attain the projected harvest of 775 with fawn ratios similar to the last few years, this herd will remain stable at slightly above objective. The predicted 2014 post-season population size of the North Natrona Pronghorn Herd is approximately 11,400 animals, which is 27% above objective.

Comments:

Appendix A:
 North Natrona Pronghorn Line Transect Survey Bio-Year 2012 - Results and Histogram

Effort:	483.4900
\# samples:	38
Width:	212.0000
Left:	0.0000000
\# observations:	216
Model 1	
Hazard Rate key, $\mathrm{k}(\mathrm{y})=1-\operatorname{Exp}\left(-(\mathrm{y} / \mathrm{A}(1))^{* *}-\mathrm{A}(2)\right)$	

Parameter	Point Estimate	Standard Error	Percent Coef. of Variation	95\% Confidence Interval	
DS	5.6807	1.1247	19.80	3.8594	8.3615
E(S)	1.5659	$0.59588 \mathrm{E}-01$	3.81	1.4527	1.6878
D	8.8951	1.7934	20.16	6.0024	13.182
N	11083	2234.5	20.16	7479.0	16425

Measurement Units
Density: Numbers/Sq. miles
ESW: meters

Component Percentages of $\operatorname{Var}(\mathrm{D})$
Detection probability: 79.5
Encounter rate: 16.9
Cluster size: 3.6
Estimation Summary: Encounter Rates

	Estimate	\% CV	DF	95\% Confidence Interval	
n	216.00				
k	38.000				
L	483.49				
n / L	0.44675	8.29	19.00	0.37572	0.53122
Left	0.0000				
Width	212.00				

Estimation Summary: Detection Probability
Hazard/Polynomial

	Estimate	\% CV	DF	95\% Confidence Interval	
m	2.0000				
LnL	-288.94				
AIC	581.88				
AICc	581.94				
BIC	588.63				
Chi-p	0.45571				
f(0)	$0.79011 \mathrm{E}-02$	17.98	214.00	$0.55588 \mathrm{E}-02$	$0.11230 \mathrm{E}-01$
p	0.59701	17.98	214.00	0.42003	0.84855
ESW	126.57	17.98	214.00	89.046	179.89

Estimation Summary - Expected Cluster Size
Estimate

Average cluster size	\%CV	df	95\% Confidence Interval	
1.6250	5.29	215.00	1.4643	

Hazard/Polynomial

	Estimate	\% CV	DF	95\% Confidence Interval	
r	$-0.34582 \mathrm{E}-02$				
r-p	0.47985				
E(S)	1.5659	3.81	214.00	1.4527	1.6878

Estimation Summary - Density \& Abundance

	Estimate	\% CV	DF	95\% Confidence Interval	
D	.6807	19.80	208.56	3.8594	8.3615
DS	8.8951	20.16	223.96	6.0024	13.182
N	11083	20.16	223.96	7479.0	16425

Antelope - North Natrona
Hunt Area 73
Casper Region
Revised 4/88

2013 - JCR Evaluation Form

SPECIES: Pronghorn		PERIOD: 6/1/2013-5/31/2014
HERD: PR748 - NORTH CONVERSE		
HUNT AREAS: $25-26$		PREPARED BY: ERIKA

Population Size - Postseason
\square PR748-POPULATION - PR748-OBJECTIVE

Harvest

Number of Hunters

Harvest Success

Active Licenses

PR748 - Active Licenses

Days Per Animal Harvested
\square PR748 - Days

Preseason Animals per 100 Females

2008-2013 Preseason Classification Summary
for Pronghorn Herd PR748 - NORTH CONVERSE

		MALES				FEMALES		JUVENILES		Tot Cls	$\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$	Males to 100 Females				Young to		
Year	Pre Pop	Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	32,797	289	488	777	27\%	1,248	44\%	832	29\%	2,857	3,496	23	39	62	± 4	67	± 5	41
2009	38,680	312	740	1,052	29\%	1,430	40\%	1,101	31\%	3,583	3,287	22	52	74	± 5	77	± 5	44
2010	35,678	373	807	1,180	32\%	1,490	41\%	999	27\%	3,669	3,160	25	54	79	± 5	67	± 4	37
2011	33,597	93	480	573	27\%	895	42\%	683	32\%	2,151	3,105	10	54	64	± 5	76	± 6	47
2012	29,874	82	253	335	26\%	567	44\%	376	29\%	1,278	3,040	14	45	59	± 7	66	± 7	42
2013	27,293	101	294	395	23\%	803	47\%	498	29\%	1,696	2,059	13	37	49	± 5	62	± 6	42

Hunt Area	Type	Dates of Seasons		Quota	Limitations
		Opens	Closes		
25	1	Oct. 1	Oct. 14	600	Limited quota licenses; any antelope
	6	Oct. 1	Oct. 14	200	Limited quota licenses; doe or fawn
26	1	Sep. 24	Oct. 14	900	Limited quota licenses; any antelope
	6	Sep. 24	Oct. 14	400	Limited quota licenses; doe or fawn
Archery		Aug. 15	Sep. 30		Refer to license type and limitations in Section 2

Hunt Area	Type	Quota change from 2013
25	1	-300
	6	-300
26	1	-300
	6	-400
Herd Unit Total	$\mathbf{1}$	$\mathbf{- 6 0 0}$
	$\mathbf{6}$	$\mathbf{- 7 0 0}$

Management Evaluation

Current Postseason Population Management Objective: 28,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~28,000
2014 Proposed Postseason Population Estimate: ~24,900

Herd Unit Issues

The North Converse Pronghorn Herd Unit has a post-season population objective of 28,000 pronghorn. This herd is managed under the recreational management strategy, with a goal of maintaining preseason buck ratios between 30-59 bucks per 100 does. The objective and management strategy were last revised in 1989, and are scheduled for revision in 2015.

Public hunting access within the herd unit is poor, with only small tracts of accessible public land interspersed within predominantly private lands. Two Walk-In Areas provide some additional hunting opportunity, although they are relatively small in size. Primary land uses in this herd unit include extensive oil and gas production, large-scale industrial wind generation, In-

Situ uranium production, and traditional cattle and sheep grazing. In recent years, expansion of oil shale development has dramatically escalated anthropogenic disturbance throughout this herd unit. The cumulative impacts on pronghorn from the increased natural resource development in this area are unknown but potentially significant.

Weather

Weather conditions throughout 2012 and into 2013 were extremely dry and warmer than normal. The winter of 2012-2013 was mild, although the 2013-14 winter has been moderate to date with substantial precipitation and multiple sub-zero cold snaps. However, warm conditions often occurred in between the severe cold snaps which served to melt out lowlands and expose forage for wintering pronghorn. An extremely large snowstorm occurred in early October of 2013 and produced two to three feet of snow in most areas. This storm (Winter Storm "Atlas") did not likely impact pronghorn survival as it melted rapidly. However, it may have significantly impeded harvest success in some portions of this herd unit as the storm coincided with the first week of the hunting season in Area 25. In general, winter survival was thought to be normal over the last bio-year. However, the extraordinary drought of 2012 resulted in pregnant females entering the 2012-2013 winter in poor condition, which was perhaps the most significant driver behind the relatively poor fawn production realized in 2013. Fortunately, growing season moisture was markedly improved in 2013, which should benefit pronghorn, especially pregnant females, through the 2013-2014 winter.

Habitat

Although there are no habitat transects in this herd unit, habitat conditions were exceptionally poor through 2012 due to the extreme drought. This was the driest year on record in most of Wyoming. Fortunately, growing season and summer/fall moisture was improved in 2013 which allowed these rangelands to begin recovery. Given the reduced number of pronghorn currently within this herd unit, which will result in reduced herbivory, habitat conditions should begin to improve. However, several consecutive years of improved precipitation will be needed to more completely rejuvenate habitats and provide better conditions for the long-term productivity of this pronghorn herd.

Field Data

It has been increasingly difficult to meet classification sample sizes in this herd unit as it is no longer a budget priority for aerial surveys. Total number of animals classified has markedly decreased since aerial surveys were eliminated in 2011. In 2013, the adequate sample size was 2,100 animals, yet only 1,696 pronghorn were classified with intensive ground coverage.

Overall, fawn production/survival has remained fairly consistent in this herd unit, although the 2013 ratio of 62 was well below the 5 -year average of 71 . It should be noted that preseason fawn ratios are typically higher in this herd compared to all other adjacent herd units. This is thought to be attributed to intensive predator control efforts that are sustained throughout much of this herd unit due to widespread domestic sheep production. However, despite relatively higher preseason fawn ratios being observed in this herd unit, overall population trend has declined in this herd to nearly the same extent as adjacent herds. This suggests that while over-summer
fawn survival seems to be elevated in this herd, over-winter fawn survival is likely poorer compared to surrounding herds.

Preseason buck ratios declined considerably in 2013 (49 per 100 does), although they remain in line with management strategy criteria. The 2013 ratio was 38% lower than the previous 5 -year average of 68 . However, in most years, preseason buck ratios have been well above the management strategy maximum, which is a function of limited access due to the preponderance of private land and widespread outfitting. The 2013 buck ratio is the lowest on record for this herd since 1991. The noticeable decline in buck ratios further indicate this population has declined significantly in recent years.

Harvest

Overall harvest has declined precipitously in this herd unit as license issuance has decreased in lieu of population decline. The 2013 total harvest of 2,268 was the lowest total pronghorn harvest obtained in this herd unit since 2006. License success in 2013 (77\%) also declined significantly compared to the previous 5 -year average of 88%. This is the lowest license success this herd has experienced since 1995. In 2013, all license types were sold by the close of the season despite 2,126 (out of 3,400 issued) being available for leftover sales after the drawing. In addition, the days required to harvest an animal has been steadily climbing over the last few years. In 2013, hunters experienced an increased number of days per animal (4.0), which was somewhat higher than the preceding 5 year average of 3.6 days/animal.

In 2013, 79\% of hunters reported being either satisfied or very satisfied with their hunt, indicating a remarkably high level of satisfaction given the lack of public access and population decline. It should be noted that most hunters who speak to Game and Fish personnel are advised to secure access on private land before purchasing a license in areas that have limited public access.

Population

The 2013 post-season population estimate is approximately 28,000, which is at objective. This herd has the potential for rapid growth as has been seen in years past. High fawn productivity coupled with limited access has allowed this herd to exceed the objective very readily. However, this population dropped to objective in the last year and is predicted to continue to decline. As such, the reduction in licenses was warranted for 2014 to manage this herd near objective. This herd began to decline following elevated mortality during the relatively severe 2010-2011 winter. Subsequent poor fawn recruitment has further suppressed this herd. The last line transect survey was conducted in this herd unit in May of 2013, which resulted in an estimated end-of-year population of 27,200 pronghorn (Appendix A).

The "Time Specific Juvenile - Constant Adult" (TSJ-CA) spreadsheet model was chosen for the post-season population estimate of this herd. All three models had very similar relative AIC values. The TSJ-CA model most accurately represented population trend based on field personnel and landowner perceptions. This model is considered to be of fair quality as it tracks through a recent Line Transect end-of-year estimate for bio-year 2012 and tracks well with observed preseason buck ratios.

Management Strategy

The traditional season in this herd unit has ran from October $1^{\text {st }}$ to October $14^{\text {th }}$ in Hunt Area 25 and from September $24^{\text {th }}$ to October $14^{\text {th }}$ in Hunt Area 26. These season dates have typically been adequate to meet landowner desires while accommodating a reasonable harvest. For 2014, both Type 1 and Type 6 license issuance was decreased by 600 and 700, respectively. These reductions were warranted to decrease harvest pressure on both males and females given this population is predicted to decline below objective over the next year. However, given the current size of this population, managers felt pronghorn numbers were sufficiently high to warrant some level of continued doe/fawn harvest. If we attain the projected harvest of $\sim 1,785$ individuals and realize normal fawn recruitment, this pronghorn population is projected to decrease to about 24,800 pronghorn, which is 11% below objective.

Appendix A:

North Converse Pronghorn Line Transect Survey Bio-Year 2012 - Results and Histogram

Effort: $\quad 906.9438$
\# samples: 57
Width: 206.0000
Left: $\quad 0.0000000$
\# observations: 480
Model 1
Hazard Rate key, $\mathrm{k}(\mathrm{y})=1-\operatorname{Exp}\left(-(\mathrm{y} / \mathrm{A}(1))^{* *}-\mathrm{A}(2)\right)$

Parameter	Point Estimate	Standard Error	Percent Coef. of Variation	95% Confidence Interval	
DS	7.2787	0.93255	12.81	5.6593	9.3615
E(S)	1.4730	$0.35594 \mathrm{E}-01$	2.42	1.4047	1.5446
D	10.721	1.3978	13.04	8.3001	13.848
N	27242	3551.8	13.04	21091	35189

Measurement Units
Density: Numbers/Sq. miles
ESW: meters

Component Percentages of $\operatorname{Var}(\mathrm{D})$

Detection probability:	62.6
Encounter rate:	33.9
Cluster size:	3.4

Estimation Summary: Encounter Rates

	Estimate	\% CV	DF	95% Confidence Interval	
n	480.00				
k	57.000				
L	906.94				
n / L	0.52925	7.59	29.00	0.45321	0.61805
Left	0.0000				
Width	206.00				

Estimation Summary: Detection Probability
Hazard/Polynomial

	Estimate	\% CV	DF	95% Confidence Interval	
m	2.0000				
LnL	-768.50				
AIC	1541.0				
AICc	1541.0				
BIC	1549.4				
Chi-p	$0.70880 \mathrm{E}-01$				
f(0)	$0.85456 \mathrm{E}-02$	10.32	478.00	$0.69811 \mathrm{E}-02$	$0.10461 \mathrm{E}-01$
p	0.56805	10.32	478.00	0.46406	0.69536
ESW	117.02	10.32	478.00	95.596	143.24

Estimation Summary - Expected Cluster Size
Estimate

Average cluster size	\%CV	df	95% Confidence Interval	
1.5708	3.73	479.00	1.4600	1.6901

Hazard/Cosine

	Estimate	\% CV	DF	95\% Confidence Interval	
r	$-0.34019 \mathrm{E}-01$				
r-p	0.22856				
E(S)	1.4730	2.42	478.00	1.4047	1.5446

Estimation Summary - Density \& Abundance

	Estimate	\% CV	DF	95\% Confidence Interval	
D	7.2787	12.81	194.63	5.6593	9.3615
DS	10.721	13.04	208.62	8.3001	13.848
N	27242	13.04	208.62	21091	35189

Species: Mule Deer	Period: $6 / 1 / 2013-5 / 31 / 2014$
Herd: MD740 - CHEYENNE RIVER	
Hunt Areas: $7-14,21$	Prepared By: JOE SANDRINI

	2008-2012 Average	$\underline{2013}$	2014 Proposed
Population:	19,005	18,180	18,754
Harvest:	1,551	932	720
Hunters:	2,787	2,107	1,350
Hunter Success:	56\%	46\%	53\%
Active Licenses:	2,865	2,137	1,385
Active License Percent:	54\%	45\%	52\%
Recreation Days:	11,638	8,546	5,400
Days Per Animal:	7.5	8.9	7.5
Ratio Males per 100 Females	33	36	
Ratio Juveniles per 100 Females	54	59	
Population Objective:			38,000
Management Strategy:			Recreational
Percent population is above (+) or	below (-) objective:		-52.2\%
Number of years population has been + or - objective in recent trend:			13
Model Date:			02/20/2014

Proposed harvest rates (percent of pre-season estimate for each sex/age group):

	JCR Year	Proposed
	0.4%	0.4%
Males ≥ 1 year old:	24.4%	16.8%
Juveniles (< 1 year old):	0%	0.01%
Total:	5.5%	4.1%
Projected change in post-season population:	$+4.7 \%$	$+3.2 \%$

Harvest Success

Postseason Animals per 100 Females

2008-2013 Postseason Classification Summary for Mule Deer Herd MD740-CHEYENNE RIVER																		
		MALES				FEMALES		JUVENILES		Tot Cls	Cls Obj	Males to 100 Females				Young to		
Year	Post Pop	Ylg	Adult	Total	\%	Total	\%	Total	\%			YIng	Adult	Total	$\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2009	27,455	165	418	583	19\%	1,569	51\%	924	30\%	3,076	1,159	11	27	37	± 2	59	± 3	43
2010	20,863	89	223	312	18\%	947	53\%	513	29\%	1,772	974	9	24	33	± 3	54	± 4	41
2011	18,784	113	281	394	17\%	1,155	51\%	711	31\%	2,260	1,211	10	24	34	± 2	62	± 4	46
2012	17,367	119	185	304	19\%	932	57\%	406	25\%	1,642	708	13	20	33	± 3	44	± 3	33
2013	18,180	114	302	416	19\%	1,142	51\%	669	30\%	2,227	1,127	10	26	36	± 3	59	± 3	43

Note - Herd data not available in JCR program for years prior to herd unit combination that created Cheyenne River Mule Deer Herd. Figures above this table and JCR 30-30 form generated from Excel spreadsheet data and chart generation on file with Newcastle wildlife biologist

2014 HUNTING SEASONS CHEYENNE RIVER MULE DEER HERD (MD740)

| Hunt
 Area | Type | Season Dates | |
| :---: | :---: | :---: | :---: | :---: |
| Opens | Closes | Quota | Limitations |

Region B Nonresident Quota: 1,000
SUMMARY OF CHANGES IN LICENSE NUMBER

Hunt Area	License Type	Quota change from 2013
Herd Unit	6	none
Totals	Region B	-500

Management Evaluation

Current Management Objective: 38,000
Management Strategy: Recreational
2012 Postseason Population Estimate: ~ 17,400
2013 Proposed Postseason Population Estimate: ~18,200
Herd Unit Issues: The Cheyenne River mule deer herd was created in 2009 by combining the Thunder Basin and Lance Creek herds. The postseason population objective is 38,000 , a combination of the parent herds' objectives. The herd is managed for recreational hunting; and the management objective for this herd is scheduled to be reviewed later this year.

There are about $6,350 \mathrm{mi}^{2}$ in this herd unit, and $5,485 \mathrm{mi}^{2}$ (86\%) are considered occupied habitat. Approximately 75% of the land within the herd unit is privately owned, with the remaining lands administered by the United States Forest Service, Bureau of Land Management, or the State of Wyoming. As a result, hunter access is largely limited and controlled by landowners, and access fees along with outfitted hunting are common. Consequently, hunting pressure can be heavy on accessible public land. About two-thirds of the hunters pursuing mule deer in this herd unit are nonresidents. These nonresidents typically are more willing to pay trespass or access fees for hunting privileges on private land or hire an outfitter. Hunt Areas (HA) 8, 10, and 13 are the only areas containing large blocks of accessible public land, which most of the resident hunters seek. These hunt areas typically receive heavy hunting pressure throughout the season.

Primary land uses within the herd unit include livestock grazing, oil and gas production, and some crop production. By far, the dominant land use throughout the herd unit is livestock grazing. The majority of oil and gas development occurs in the western and north central portions of the herd unit. However, substantial new oil and gas development is occurring in the central portion of the herd unit in northwest Niobrara County (HA 11) and near Douglas (HA 14). In addition, horizontal oil well development over a large portion of these same two hunt areas is expected to increase disturbance in the future. There are also several large surface coal mines in HA 10 and HA 21, which create a high level of disturbance. Cultivation of alfalfa, hay, oats, and wheat occur mostly in the southern and eastern portions of the herd unit.

Weather: Beginning in 2007, drought combined with poor habitat conditions and more normal winter weather patterns reduced recruitment in this herd. Since then, annual harvest of antlerless deer has dropped significantly, but more severe late winter and early spring weather have impacted the herd. The winter of 2010-11 was very harsh in the northern half of the herd unit, and over-winter mortality was well above average. Warmer and drier conditions beset the area during the end of bio-year 2011 and continued through the 2012-13 winter, with the 2012 summer being the driest on record. Overall, the weather pattern during bio-year 2012 resulted in poor forage production, very low recruitment, and average over-winter survival of all age classes of mule deer. During the past seven years, tougher winter and spring conditions and generally dry summers have resulted in reduced fawn productivity and survival when compared to the preceding decade. These conditions may have also fostered the outbreaks of Epizootic Hemorrhagic Disease (EHDV) observed in late summer / early fall, especially since 2009. As such, the weather patterns over the last decade have been the remote cause for this herd's decline by affecting various proximate mortality factors.

April of 2013 finally saw a break in the recent drought when temperatures dropped below normal for the entire month, and significant precipitation was again received. This cold, wet pattern continued with daily temperatures returning to near long-term averages through the summer of 2013. This helped increase forage production, but fawn survival and recruitment remained suppressed, perhaps due to poor body condition of does resulting from the 2012 drought, and continued EHDV may have increased late summer fawn mortality. In early October 2013, winter storm "Atlas" blanketed the herd unit with 12 " to nearly 36 " of wet snow and drifts exceeding 6 -feet in some locations. While no significant level of mule deer mortality was detected due to this storm, the snow and resulting muddy conditions forced the cancellation of hunting for some license holders, and made accessing deer difficult in many locations. Towards the end of the hunting seasons, travel conditions improved, but it was apparent winter storm Atlas negatively impacted hunter participation and hampered hunting success. The early winter months of bio-year 2013 saw temperature and precipitation conditions near the recent 30-year average. For detailed weather data see http://www.ncdc.noaa.gov/cag/time-series/us.

Habitat: Sagebrush (Artemisia ssp.) steppe and sagebrush grasslands with scattered hills dominated by ponderosa pine (Pinus ponderosa) comprise most of the western, central, and northern segments of the herd unit. The eastern most lands in the herd unit are comprised of short grass prairie punctuated by the previously mentioned pine breaks, and there is a small area (about $30 \mathrm{mi}^{2}$) of southern Black Hills habitat along the state line near Newcastle. Rolling ponderosa pine and limber pine (Pinus flexilis) hills and ridges dominate the southern portions of the herd unit. Major agricultural crops are grass and alfalfa hay, and winter wheat. Croplands are localized and found primarily near Gillette, Moorcroft, Upton, Newcastle, Manville, and Lusk. These variations in habitat types and limited riparian areas affect deer densities and distribution. The majority of mule deer are typically found utilizing broken topography characterized by sagebrush, conifer covered hills, or cottonwood and sagebrush dominated riparian communities. Scattered mule deer are found in the open sagebrush-grassland areas.

Several major cottonwood riparian drainages traverse the herd unit including the Belle Fourche River and Cheyenne Rivers and many of their tributary creeks such as Beaver Creek, Lightning Creek, Twenty-Mile Creek, Lance Creek, and Old Woman Creek. Overstory canopy along these drainages is dominated by decadent stands of plains cottonwood (Populus deltoides). These riparian cottonwood groves comprise one of the most important habitat types for mule deer in this herd unit. Unfortunately, many are in poor condition and lack recruitment of new cottonwoods and associated woody understory species. The majority of the drainages are ephemeral, and free flowing springs are rare. Water developments for livestock have benefited mule deer in this herd unit. Coal bed methane development has increased water availability near Wright and Gillette, but this water's quality and effects on the mule deer population are unknown.

Beginning in the fall of 2001, Department personnel established Wyoming big sagebrush monitoring transects within the herd unit. Leader production measurements were suspended in 2010, but over-winter estimates of use continued through 2011. The declining health and/or loss of these shrub stands was born out during this monitoring. In $2006 \& 2007$, drought coupled with grazing and browsing by wild and domestic animals, negatively impacted winter food
availability. Conditions improved slightly between 2008 and 2010, but observed fawn:doe ratios were low, which was likely due to more normal to severe winter and spring weather patterns. Even without direct measurements being taken in 2012, it was readily apparent shrub condition and forb production declined substantially, when severe drought impeded growth and the fawn:doe ratio plummeted. Neither sagebrush production nor utilization was measured in 2013. However, a very wet spring and summer along with low numbers of mule deer on the range contributed to a visible improvement in range conditions.

The overall lack of cottonwood regeneration is also a concern in this herd unit. Photo-point transects have shown some dramatic losses of seedling and young cottonwood trees. These losses have been primarily attributed to livestock grazing and beaver, and to a lesser extent by deer and elk. The health and vigor of riparian cottonwood communities and shrub stands needs to be enhanced if mule deer are going to thrive in this part of Wyoming.

Field Data: While postseason fawn:doe ratios have undergone cyclical fluctuations, they have generally trended downward (Figure 1). Since 1991, fawn ratios have averaged 67 fawns per 100 does (std. dev. 12), which is below longer-term averages, but above the mean of 55:100 observed over the past 5-years. In 2013, the observed, post-season fawn:doe ratio was 59:100, an improvement from the previous year (44:100), but still below the value needed to halt this population's decline. Recent suppressed fawn:doe ratios are thought to be a result of poor range conditions due the extreme drought of 2012. Notably, observed fawn:doe ratios dropped after the harsher winters of 1983-1984; 1992-1993; and 2000-2001, but increased during the years following each nadir.

Figure 1. Post-Season Fawn:Doe Ratios: Cheyenne River Mule Deer Herd (1991 - 2013) and linear trend line ($\mathrm{R}^{2}=0.36$).

Following the 2010-2011 winter, which was very severe in the northern one-third of the herd unit, fawn-doe ratios actually increased slightly above the preceding year. The apparent effects
of this particular winter being perhaps moderated by a combination of better habitat conditions and fewer deer in the southern two-thirds of the herd unit, and more moderate spring weather with excellent forage production - parameters that did not present themselves following the other winters mentioned. However, extreme drought in 2012 manifested itself in the lowest fawn:doe ratio observed in recent history.

While productivity in this herd unit, as measured by fawn:doe ratios, has declined since the early 1980's, poor reproduction was not considered to be limiting in this herd until recently. Between 2001 and 2009, lower productivity may have been a blessing, as difficult access to private land for hunters limited our ability to regulate deer numbers through sport hunting, and habitat conditions became poor. At the time, area managers strongly believed the observed decrease in productivity was linked primarily to declines in overall quality and quantity of sagebrush and riparian habitat within the herd unit. However, beginning in 2009, weather conditions moved away from drought, and with reduced numbers of both domestic livestock and wild ungulates across the range, shrub conditions began to improve, but fawn:doe ratios remained suppressed. During this timeframe more normal to severe winter weather was experienced and the populations of small game animals dropped. This may have indirectly increased predation on fawn mule deer. It does appear fawn:doe ratios in this herd are very sensitive to weather and habitat conditions. Additionally, since about 2006, there have been reports of dead deer each year in the early fall, and Epizootic Hemorrhagic Disease (EHD) was confirmed in multiple cases.

Buck:doe ratios in this herd increased between 2003 and 2007, peaking at 45:100. Since then, they have declined and stabilized near the 10 -year average ($35: 100$). Until 2008, moderate productivity coupled with limited access for hunters to private land yielded an increasing buck:doe ratio (despite enhanced license issuance). Since then, fawn production and survival have dropped resulting in a decline in buck ratios. The 2013 observed, post-season buck:doe ratio was $36: 100$, while the modeled value was $33: 100$. Visibility of yearling bucks is high during classifications, and tracking yearling buck ratios provides managers with a good indication of recruitment into this population, given low harvest rates of yearling bucks.

Harvest Data: Most harvested mule deer are taken off private land because it provides the majority of mule deer habitat. The Department is currently attempting to balance desires of landowners and hunters to increase deer numbers, but still keep the population at levels that will reduce the chance of a large-scale die-off. Access to private lands for deer hunting continues to decrease due to leasing by outfitters and many landowners are limiting hunting in the wake of declining deer numbers. Over the past two decades, outfitter control has significantly curtailed access to buck deer, and harvest of bucks dropped when seasons were liberalized in the mid 2000's. The reduced access to private land for deer hunters has increased hunting pressure on bucks on accessible public lands, and resulted in lower numbers of bucks there. Many landowners have stated, even when the population of deer was higher, that they are not willing to host increased numbers of hunters, or tolerate much in the way of doe/fawn hunting. Consequently, we have basically reached access saturation at this time on much of the private land in the herd unit.

Since 2006, hunter numbers and harvest have declined steadily, while hunter effort has increased. Initially, most of the decline in hunter numbers was due to a reduction in the number of non-residents hunting mule deer as the Region B quota dropped. More recently, there has been a decline in resident hunters as well. Further, during each of past four hunting seasons, many complaints were received from both hunters and landowners throughout the herd unit with regard to the low number of deer seen and harvested. It is evident from the reduced number of deer found during classification efforts, changes in harvest statistics, and landowner contacts that this herd declined substantially over the past three to four years.

It is interesting that while the preseason population estimate for this herd increased 2% between 2012 and 2013, hunter success drop precipitously and effort increased in 2013, even with fewer hunters afield. These statistics were no doubt influenced by the poor weather and road conditions caused by winter storm Atlas. In addition to the storm's impacts, nearly 20% of the available Region B tags did not sell in the regular drawing, but were purchased after the draw. It was apparent from field contacts that many of the hunters purchasing leftover license were forced to hunt already overcrowded public land; and more than a few landowners turned hunters away whom they previously granted permission to hunt. This large cadre of hunters forced by choice or circumstance to hunt public land could have also impacted the harvest statistics in the manner observed.

Population: The 2013 post-season population estimate for this herd is $\sim 18,200$. The population model suggests this population peaked near objective in 2000 and then dropped dramatically following the tough winter of 2000 . The herd is projected to have rebounded between 2002 and 2006 and leveled off in 2007 about 15\% below objective. Between 2007 and 2012 the herd again declined significantly and may have leveled off again or increased slightly over the last year, but at a level 53% below its present objective.

The Semi-Constant Juvenile / Semi-Constant Adult (SCJ SCA) model was chosen to estimate this herd's population. It was selected over competing models because it had the lowest relative AICc and fit was similar to the better fitting Time Specific Juvenile / Constant Adult Survival (TSJ CA) model. The selected model tracks observed buck:doe ratios well, with changes in preseason population estimates being 91% correlated with changes in hunter success, and inversely correlated 83% with changes in hunter effort between 2007 and 2012. Modeled changes in population size also mirror impressions of field personnel and many landowners. Overall, this model is considered to be of good quality because it has 15^{+}years of data, ratio data are available for all years in the model, and it aligns fairly well with observed data.

Management Summary: The traditional season dates for this herd unit are Oct. 1-15. In order to facilitate population growth commensurate with landowner desires, we have eliminated most doe/fawn harvest and continue antlered-only general license seasons for mule deer. Limited doe/fawn harvest will continue in HA 12, where a couple landowners are experiencing some damage and want to reduce mule deer numbers locally, and also in the northeastern quarter of HA 9 to allow landowners concerned with damage on Stockade Beaver Creek to address the issue if they choose.

Due to intense hunting pressure on public land there is a major discrepancy in deer numbers and densities between private and public land areas. This is best exemplified in HA 10, which contains the highest proportion of public land in the herd unit. To address low buck numbers and hunter crowding in this area, we have been steadily reducing the Region B quota, running a short hunting season, and implemented a 3-point restriction in 2012. The combined strategy of limiting Region B licenses and conservative hunting seasons may be helping. The buck:doe ratio improved in HA 10 to the herd-wide average in 2009 and 2010, but deer densities remained depressed. However, in 2011, the observed buck:doe ratio in HA 10 dropped to 16:100, as did the number of deer observed per hour of classification flight time. This led to the 3-point restriction implemented in 2012, and the post-season buck:doe ratio improved to 42:100 in 2012, but only 27 bucks were observed in over 4 hours of helicopter flight time post-season 2012. The same classification effort in 2013 by the Department along with a fixed winged flight by the Niobrara County Predator Board on private lands found 41 total bucks, and a buck:doe ratio of 35:100. However, the Department's HA 10 effort in 2013, which duplicated that of 2012, found 30 total bucks and a buck:doe ratio of 28:100. While buck:doe ratios have improved in HA 10, overall deer densities remain far below manager's and public desires, and likely habitat carrying capacity.

Many landowners have stated they are not taking deer hunters this again year, or are reducing the number they host. In addition, last year several ranches that together normally host a couple hundred deer hunters turned these hunters away at the start of the season, due to low deer numbers. Harvest statistics from HA 10 also suggest non-resident hunters continue to significantly outnumber resident hunters on public land. Because of the overcrowding of hunters on accessible public land and lack private landowners willing to host hunters, the Region B quota has again been reduced. The Region B quota of 1,000 should allow nearly all $1^{\text {st }}$ choice applicants to draw a license; and the 2014 hunting season should result in harvest of about 680 bucks and 40 antlerless deer. Given five-year average postseason classification values and modeled survival rates, this harvest is projected to allow the post-season population to increase about 3% in 2014, but will remain far below objective.

FIGURES

2013 - JCR Evaluation Form

SPECIES: Mule Deer			PERIOD: 6/1/2013-5/31/2014
HERD: MD751-BLACK HILLS			
HUNT AREAS: 1-6			PREPARED BY: JOE SANDRINI
	2008-2012 Average	$\underline{2013}$	2014 Proposed
Population:	20,455	19,920	21,525
Harvest:	2,061	1,548	1,555
Hunters:	5,055	3,719	3,740
Hunter Success:	41\%	42\%	42 \%
Active Licenses:	5,251	3,767	3,790
Active License Percent:	39\%	41\%	41 \%
Recreation Days:	16,104	11,324	11,665
Days Per Animal:	7.8	7.3	7.5
Males per 100 Females	17	21	
Juveniles per 100 Females	70	79	
Population Objective:			20,000
Management Strategy:			Recreational
Percent population is above (+) or below (-) objective:			-0.4\%
Number of years population has been + or - objective in recent trend:			4
Model Date:			02/20/2014
Proposed harvest rates (percent of pre-season estimate for each sex/age group):			
		JCR Year	Proposed
	Females ≥ 1 year old:	1.7\%	1.6\%
	Males ≥ 1 year old:	48.1\%	37.6\%
	Juveniles (<1 year old):	0.2\%	0.2\%
	Total:	7.9\%	7.4\%
Proposed ch	post-season population:	+0.2\%	+8.1\%

Population Size - Postseason

Harvest

Number of Hunters

Harvest Success
\square MD751 - Hunter Success \% $\quad \square_{\%}^{\text {MD751 - Active License Success }}$

Active Licenses

\square MD751 - Days

Postseason Animals per 100 Females

2008-2013 Postseason Classification Summary

for Mule Deer Herd MD751-BLACK HILLS

		MALES				FEMALES		JUVENILES		Tot Cls	Cls Obj	Males to $\mathbf{1 0 0}$ Females				Young to		
Year	Post Pop	YIg	Adult	Total	\%	Total	\%	Total	\%			YIng	Adult	Total	Conf Int	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	23,469	73	103	176	9\%	1,085	52\%	806	39\%	2,067	1,505	7	9	16	± 2	74	± 4	64
2009	21,094	48	52	100	10\%	522	53\%	357	36\%	979	1,317	9	10	19	± 3	68	± 6	57
2010	19,555	44	71	115	10\%	659	55\%	421	35\%	1,195	1,174	7	11	17	± 2	64	± 5	54
2011	18,651	41	76	117	10\%	658	56\%	406	34\%	1,181	1,118	6	12	18	± 2	62	± 5	52
2012	19,505	58	70	128	8\%	787	52\%	596	39\%	1,511	1,553	7	9	16	± 2	76	± 5	65
2013	19,920	73	62	135	11\%	634	50\%	499	39\%	1,268	1,700	12	10	21	± 3	79	± 6	65

2014 HUNTING SEASONS

BLACK HILLS MULE DEER HERD (MD751)

Hunt Area	Type	Dates of Opens	Seasons Closes	Quota	License	Limitations
1		Nov. 1	Nov. 21		General	Antlered deer off private land; any deer on private land
2	6	Nov. 1	Nov. 21	50	Limited quota	Doe or fawn valid on private land
2		Nov. 1	Nov. 21		General	Antlered deer off private land; any deer on private land
3		Nov. 1	Nov. 21		General	Antlered deer off private land; any deer on private land
4		Nov. 1	Nov. 20		General	Antlered deer off private land; any deer on private land except the lands of the State of Wyoming's Ranch A property shall be closed
4	6	Nov. 1	Nov. 20	150	Limited quota	Doe or fawn valid on private land
5		Nov. 1	Nov. 20		General	Antlered deer off private land; any deer on private land
5	6	Nov. 1	Nov. 20	25	Limited quota	Doe or fawn
6		Nov. 1	Nov. 20		General	Antlered deer off private land; any deer on private land
6, 9	6	Nov. 1	Nov. 20	10	Limited quota	Doe or fawn valid east of U.S. Highway 85

Region A Nonresident Quota: 2,750

SUMMARY OF CHANGES IN LICENSE NUMBER

Hunt Area	License Type	Quota change from 2013
2	6	+25
6	6	-10
Herd Unit Totals	$\mathbf{6}$	$\mathbf{R e g i o n} \mathbf{A}$

Management Evaluation
Current Postseason Population Management Objective: 20,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 19,900
2014 Proposed Postseason Population Estimate: ~ 21,500

Herd Unit Issues: The management objective of the Black Hills mule deer herd unit is an estimated post-season population of 20,000 mule deer with a recreational management strategy. It is managed for recreational hunting to limit deer numbers to a level compatible with landowner desires. The population objective and management strategy were set in 1986. The objective and management strategy will be reviewed in 2015.

The Black Hills mule deer herd unit encompasses $3,181 \mathrm{mi}^{2}$ of occupied habitat. 76% of the land in the herd unit is privately owned. Significant blocks of accessible public land are found on the Black Hills National Forest in Hunt Area (HA) 2 and HA 4, and on the Thunder Basin National Grassland in HA 6. A block of BLM land with a couple of access points is also present in HA 1. Because the majority of private landowners charge high access fees for hunting, these parcels of public land receive greater hunting pressure than private lands.

Historically, management of this herd has been a byproduct of managing the Black Hills WhiteTailed Deer Herd. Deer hunting seasons have been primarily structured to address the whitetailed deer population. As with many of the herd units in the eastern half of Wyoming, the Game \& Fish Department has tried to maintain deer numbers at levels acceptable to landowners. In the case of these two deer herds, landowners typically feel saturated with white-tailed deer before mule deer become a problem.

WEATHER: Drought conditions, which were generally persistent throughout the Black Hills between 2000 and 2006, began to moderate some in 2007. Between 2007 and 2011, annual temperatures were generally near, or below, the previous 30-year average and annual precipitation each year at, or above, that average (http://www.ncdc.noaa.gov/cag/time-series/us). Notably, 2010 was colder and wetter than both the 30 -year and 100 -year averages; and the winter of 2010-11 severe. Since the late 1890's, only five other winters were as cold and snowy as that of 2010-11. Overall, the predominant weather pattern between 2007 and 2011 was characterized by generally cool summers, more persistent snow cover in late fall and winter, and above normal spring moisture.
Drought returned to the Black Hills in 2012, with well above normal summer temperatures and little rainfall during the growing season. Forage production that year was very poor, and the dry conditions and led to several large wildfires in the southern half of the herd unit. These warm and dry conditions that beset the area in April of 2012 continued through the 2012-13 winter (http://www.ncdc.noaa.gov/cag/time-series/us). April of 2013 finally saw a break in this pattern when temperatures dropped well below normal for the entire month and good precipitation was again received. Through the remainder of the growing season, temperatures were slightly above average and precipitation well above normal. This resulted in excellent forage growth. In early October, 2013 winter storm Atlas blanketed the Black Hills with anywhere from about a foot of wet heavy snow near Newcastle, to three feet on the Bearlodge, and over five feet near Cement Ridge. This single storm event significantly hampered access for hunters on to the BHNF
throughout the hunting season. No large scale die-offs of mule deer were witnessed from this storm, but a few mule deer mortalities on the National Forest south of I-90 were discovered.

Based on weather and habitat conditions over the past five years, it is likely mule deer have entered the winter in fair to good condition most years, except bio-year 2012. More normal winter temperatures and precipitation, punctuated by some severe winter weather, have increased winter stress on mule deer compared to the previous decade, as did the drought of 2012. This recent weather pattern has resulted in recruitment levels that dropped between 2009 and 2011, but have since increased. During this same timeframe, it appears over-winter survival of all age classes of mule deer has been about average, except during the winter of 2010-11 when overwinter mortality is thought to have been significant.

Habitat: Ponderosa pine (Pinus ponderosa) is the dominant overstory species on forested lands. Quaking aspen (Populus tremuloides), paper birch (Betula papyrifera), and bur oak (Quercus macrocarpa) stands are present. Important shrubs include big sagebrush and silver sage (Artemesia spp.), Saskatoon serviceberry (Amelanchier alnifolia), Oregon grape (Berberis repens), common chokecherry (Prunus virginiana), spiraea (Spiraea betulifolia), and true mountain mahogany (Cercocarpus montanus). Many non-timbered lands in the herd unit are dominated by sagebrush or are used to produce agricultural crops such as winter wheat (Triticum aestivum), alfalfa hay (Medicago sativa), and grass hay.

Currently, little quantified habitat evaluation is being conducted within this herd unit directly applicable to mule deer. A single true mountain mahogany and two bur oak production and utilization transects have been established. The true mountain mahogany transect is located on mule deer winter range typical of the southern Black Hills, and the bur oak transects are in winter range more typical of white-tailed deer habitat in the northern hills. While little habitat data overall have been collected, it appears drought conditions, when present, negatively affected shrub production, and peak mule deer numbers several years ago may have exceeded what forage conditions could sustain between bio-years 2005 and 2008.

Field Data: Between 2002 and 2005, fawn survival was fair, with observed preseason fawn:doe ratios averaging 67:100. Fawn:doe ratios then increased about 15% the next three years $\left(\operatorname{mean}_{(2006-2008)}=77: 100\right)$ before dropping 16% between 2009 and $2011\left(\operatorname{mean}_{(2009-2011)}=\right.$ 65:100). In 2012 and 2013, observed post-season fawn:doe ratios rebounded, exhibiting values of 76:100 \& 79:100 respectively. However, this herd's population has not increased significantly as a result. Because a post season ratio of 66 fawns per 100 does is thought to be the level necessary to sustain hunted mule deer populations - it appears the population decline experienced after 2006 was likely due initially to increased harvest rates and a drop in overwinter survival, while increased non-hunting mortality augmented the decline beginning in 2009. In addition, an usually severe winter in bio-year 2010 and localized epizootic hemorrhagic disease (EHDV) outbreaks each of the past five summers have increased annual mortality of all age classes. During the 2007-2010 period, evidence suggests the mountain lion population in the Black Hills reached historically high levels. As a result, harvest, weather conditions, disease, and increased predation all acted to cause the estimated post-season population to fall 36% between 2006 and 2011. This same period witnessed a 38% decline in the estimated preseason population, while preseason trend counts dropped 75% (Figure 1). With better fawn production and survival the past two years the declining trend has been reversed, but substantial population increases have not been realized.

Figure 1. 2003 - 2013 pre-season population estimates produced by TSJ CA model, and mule deer observed preseason along trend count routes (increased by a factor of 15).
*Trend counts were not conducted in 2013 due to winter storm Atlas.
As this herd grew rapidly between 1997 and 2000, conservative hunting seasons allowed postseason buck:doe ratios to increase. Then, as Region A license issuance increased, buck:doe ratios declined before leveling off at about 22:100 during a time of good fawn survival (2004 2009). Following this population’s decline, buck:doe ratios again dropped between 2008 and 2012. With better fawn production in 2012, yearling buck numbers increased the observed 2013 buck:doe ratio to $21: 100$. Since 2004, post-season buck:doe ratios in this herd have averaged 20:100 (std. dev = 3.5), but a mere 18:100 (std. dev. $=1.8$) over the past five years. As such, this herd generally exhibits buck:doe ratios at the very bottom end, or below, the Department's management criteria for recreational hunting.

Harvest Data: Deer seasons in the Black Hills have been traditionally structured to address white-tailed deer management. Consequently, this mule deer herd is managed by balancing white-tailed deer seasons and landowner tolerance for deer (both species) with recreational opportunity. An analysis of harvest information shows the number of hunters in the field pursuing bucks has the greatest impact on total harvest. As such, buck harvest has been regulated by altering non-resident hunter numbers via changes in the Region A quota, while resident buck hunter participation can only be limited by shortening the season - notably by inclusion or removal of the Thanksgiving Day weekend and the days following in November. Department surveys and contacts with non-resident hunters indicate most non-residents want to harvest buck mule deer. This fact, combined with a hunting season that targets bucks during the rut, results in very heavy hunting pressure on buck mule deer. Considering this, and the drop in total buck numbers since 2007, it is prudent to continue to limit harvest of buck mule deer.

With more conservative hunting season structures in place since 2010, mule deer harvest has dropped about 40% from the level experienced when this population peaked. At the same time, hunter success has declined between 2009 \& 2011, before increasing in 2012 \& 2013, with hunter effort following reverse trends. Hunting seasons the past four years have reduced harvest
of mule deer bucks 38% from that experienced during the immediately preceding 4 -year period with a traditional 30 day November season. Comparing these same time periods, resident harvest of mule deer bucks dropped 21%, while non-resident harvest of mule deer bucks dropped 47%. During this time frame, harvest of white-tailed deer bucks declined less (see WD706). Despite these trends, hunter satisfaction essentially remained unchanged for both species the past three years, with about 68% of the hunters reporting they were either satisfied or very satisfied with their Black Hills deer hunt, and around 15% reporting they were either dissatisfied or very dissatisfied - regardless of species. With the slight increase in deer hunter success rates in 2013, hunter satisfaction actually climbed a few percentage points for both species.

Population: The 2013 estimated, post-season population of Black Hills mule deer was about 19,900. The Black Hills mule deer population peaked at an estimated postseason population of around 29,000 mule deer in 2006, and then declined the next five years. It now appears to have stabilized recently at objective, and may be beginning to increase again. The last substantial population decline this herd experienced was in the mid 1990’s. That drop was reversed in 1998 and 1999 when very conservative hunting seasons aligned with excellent fawn survival and mild winters.

Population modeling of this herd is difficult. The herd unit violates the closed population assumption of the model. Mule deer regularly cross into the Power River Herd Unit, Montana, South Dakota and the Cheyenne River Herd Unit, as no physical barriers exist to prevent movement. The spreadsheet model chosen to estimate this population was the Time Sensitive Juvenile / Constant Adult survival rate model (TSJ CA), because it had the lowest AICc (119) and best fit (25) of competing models. The preseason population estimates produced by this model between 2003 and 2012 are also 95% correlated with preseason trend counts over the same period. ${ }^{1}$ However, this model reached upper or lower constraints on juvenile survival in 9 out of 20 years modeled, and was very close to those constraints in 5 additional years. Overall, we consider this model to be of fair to poor quality due to the lack of herd specific survival data, violations of the closed population assumption, below adequate classification sample sizes 3 of the past 6 years, and aerial classifications in terrain that makes classifying yearling bucks difficult.

MANAGEMENT SUMMARY: The spreadsheet model suggests recent postseason populations have been very close to our current management objective of 20,000 mule deer. If the herd actually numbers about 20,000 head post-season, then our current objective is well below most landowner's and hunter wishes. At this time, many landowners have expressed dissatisfaction with the number of mule deer. Based upon habitat conditions and these desires, a season designed to increase this herd is warranted. However, given the low survival witnessed the past several years, the growth potential of this herd over the next couple of years is low. Therefore, the 2014 hunting season is designed to allow buck hunting opportunity identical to 2012 and 2013, but foster herd growth. Issuance of doe/fawn tags has been increased slightly in HA 2 to allow the few landowners there wishing to control mule deer numbers that opportunity. The past four hunting seasons have seen a consistent take of about 125 mule deer does and about 15 fawns on general licenses. Another 45 or so antlerless mule deer have been harvested each of the past two years on type 6 licenses. This low level of female and juvenile mule deer harvest does not

[^2]seem to warrant complicating the regulations further by segregating mule deer and white-tailed deer harvest on general licenses, a move opposed by many landowners.

Changes to the 2014 mule deer hunting season in the Black Hills included moving the closing date to November $21^{\text {st }}$ from November $22^{\text {nd }}$ in HA's $1,2, \& 3$. This was done to maintain only three full weekends of deer hunting. Staying with the $22^{\text {nd }}$ closing date would have added an additional Saturday to the season when compared to the previous 3 years; and returning to a Thanksgiving Day closing date would have added another full week and weekend of hunting to the season beyond what has been in place the past four years. Mule deer buck numbers are still too depressed to warrant such hunting pressure during the peak of the rut. Continuing with a Region A license quota identical to last year is also intended to limit harvest of mule deer bucks. The 2014 hunting season is expected to yield a 2014 postseason population of about 21,500 mule deer, which represents an 8% increase in the current post-season population. Such a change in the population would result in this herd being 7.5% above objective, but still below the number most hunters and landowners would like to see.

FIGURES

2013 - JCR Evaluation Form

SPECIES: Mule Deer		PERIOD: 6/1/2013-5/31/2014
HERD: MD755 - NORTH CONVERSE		
HUNT AREAS: 22		PREPARED BY: ERIKA

Population Size - Postseason

 \square MD755-POPULATION - MD755-OBJECTIVE

Harvest

Number of Hunters

Harvest Success

MD755 - Hunter Success \% $\square \begin{aligned} & \text { MD755 - Active License Success } \\ & \%\end{aligned}$

Active Licenses

Days per Animal Harvested
\square MD755 - Days

Postseason Animals per 100 Females

2008-2013 Postseason Classification Summary
for Mule Deer Herd MD755-NORTH CONVERSE

		MALES				FEMALES		JUVENILES		$\begin{aligned} & \text { Tot } \\ & \text { Cls } \end{aligned}$	Cls Obj	Males to 100 Females				Young to		
Year	Post Pop	Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	$\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$	$\begin{array}{r} 100 \\ \text { Fem } \end{array}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	10,424	98	178	276	24\%	524	45\%	356	31\%	1,156	1,975	19	34	53	± 5	68	± 6	44
2009	9,868	49	126	175	22\%	393	49\%	239	30\%	807	1,351	12	32	45	± 5	61	± 6	42
2010	9,860	39	119	158	21\%	349	47\%	237	32\%	744	850	11	34	45	± 5	68	± 7	47
2011	5,761	26	94	120	22\%	257	47\%	166	31\%	543	1,276	10	37	47	± 6	65	± 8	44
2012	6,004	23	44	67	16\%	198	48\%	149	36\%	414	1,216	12	22	34	± 6	75	± 10	56
2013	6,775	30	39	69	13\%	275	53\%	176	34\%	520	1,095	11	14	25	± 4	64	± 8	51

| Hunt
 Area | Type | Dates of Seasons
 Opens | | Closes | Quota |
| :---: | :---: | :--- | :--- | :--- | :--- | Limitations | | Oct. 1 | Oct. 14 | 400 | Limited quota licenses; antlered mule deer
 or any white-tailed deer |
| :---: | :---: | :--- | :--- | :--- |
| 22 | 1 | Sep. 30 | | Refer to license type and limitations in
 Section 2 |

Hunt Area	Type	Quota change from 2013
22	1	-200
	6	-100

Management Evaluation

Current Postseason Population Management Objective: 9,100
Management Strategy: Special
2013 Postseason Population Estimate: ~6,800
2014 Proposed Postseason Population Estimate: ~6,900

Herd Unit Issues

The North Converse Mule Deer herd has a postseason population objective of 9,100 mule deer and is managed under the special management strategy, with a goal of maintaining postseason buck ratios between 30-45 bucks per 100 does. The objective and management strategy were last revised in 1997, and are scheduled for review in 2015.

Public hunting access within the herd unit is poor, with only small tracts of accessible public land interspersed with predominantly private lands. High trespass fees and outfitting for mule deer are common on most ranches within this herd unit. As a result, licenses remain undersubscribed in years when issuance is elevated to increase harvest on an over-objective population. Primary land uses in this area include extensive oil and gas production, large-scale industrial wind generation, In-situ uranium production, and traditional cattle and sheep grazing. In recent years, expansion of oil shale development has dramatically escalated anthropogenic disturbance throughout this herd unit.

Weather

Weather conditions throughout 2012 and into 2013 were extremely dry and warmer than normal. The winter of 2012-2013 was mild, although the 2013-14 winter has been moderately hard to date with substantial precipitation and multiple sub-zero cold snaps. However, warm conditions often occurred in between the severe cold snaps which served to melt out lowlands and expose forage for wintering mule deer. An extremely large snowstorm occurred in early October of 2013 and produced two to three feet of snow in most areas. This storm (Winter Storm "Atlas") did not likely impact mule deer survival as it melted rapidly. However, it may have significantly impeded harvest rates in some portions of this herd unit as the storm coincided with the first week of the mule deer hunting season. In general, winter survival was thought to be good over the last bio-year. However, the extraordinary drought of 2012 resulted in pregnant females entering the 2012-2013 winter in poor condition, which was perhaps the most significant driver behind the relatively poor fawn production realized in 2013. Fortunately, growing season moisture was markedly improved in 2013, which should benefit mule deer, especially pregnant females, through the 2013-2014 winter.

Habitat

Although there are no habitat transects in this herd unit, habitat conditions were exceptionally poor through 2012 due to the extreme drought. This was the driest year on record in most of Wyoming. Fortunately, growing season and summer/fall moisture was improved in 2013 which is allowing these rangelands to begin recovery. Given the reduced number of mule deer and sympatric pronghorn currently within this herd unit, which will result in reduced herbivory, habitat conditions should begin to improve. However, several consecutive years of improved precipitation will be needed to more completely rejuvenate habitats and provide better conditions for the long-term productivity of this mule deer herd.

Field Data

It has been increasingly difficult to meet classification sample sizes in this herd unit as it is not a budget priority for aerial surveys. Total number of animals classified has steadily decreased since 2009. Although 2013 saw a slight increase in number of animals classified, it was not significant. In 2013, the adequate sample size was 1,095 animals, yet only 520 mule deer were classified despite intensive ground coverage.

Overall, fawn production/survival has remained fairly consistent in this herd unit, with the 2013 ratio of 64 being just slightly below the 5 -year average of 67 . It should be noted that postseason fawn ratios are typically higher in this herd compared to all other adjacent herd units. This is thought to be attributed to intensive predator control efforts that are sustained throughout much of this herd unit due to widespread domestic sheep production. However, despite relatively higher postseason fawn ratios being observed in this herd unit, overall population trend has declined in this herd to nearly the same extent as adjacent herds. This suggests that while oversummer fawn survival seems to be elevated in this herd, over-winter fawn survival is likely poorer compared to surrounding herds.

Postseason buck ratios declined to 25 in 2013, which is well below special management strategy minimum criteria. Again, classification ratios should be viewed with caution as the sample size
was $\sim 50 \%$ below what was needed to ensure adequacy. Regardless, it appears postseason buck ratios have declined considerably as the 2013 ratio was 45% below the 5 -year average of 45 . The 2013 buck ratio is the lowest on record for this herd since 1992. The noticeable decline in buck ratios further indicate this population has declined significantly in recent years.

Harvest

Overall harvest has declined precipitously in this herd unit as license issuance has decreased in lieu of population decline. The 2013 total harvest of 323 was by far the lowest total deer harvest ever obtained in this herd unit. From 1991 - 2010, an average of 564 bucks were harvested per year in this herd unit. The 2013 harvest of 277 was 51% lower than the long-term average. License success in 2013 (61\%) also declined significantly compared to the previous 5 -year average of 80%. This is the lowest license success this herd has experienced since 1992. In 2013, all Type 1 licenses were sold by the close of the season despite 277 (out of 600 issued) being available for leftover sales after the drawing. In addition, the days required to harvest an animal has been steadily climbing over the last few years. In 2013, hunters experienced the highest number of days per animal since 1992, with an average of 6.9 days/animal. This is well over the preceding 5 year average of 4.7 days/animal.

In 2013, 72% of hunters reported being either satisfied or very satisfied with their hunt, indicating a remarkably high level of satisfaction given the lack of public access and population decline. It should be noted that most hunters whom speak to Game and Fish personnel are advised to secure access on private land before purchasing a license in areas that have limited public access.

Type 1 licenses have been reduced significantly the past couple of years. As buck ratios are now decreasing while this population continues to decline, Type 1 licenses should continue to be reduced to ensure management prescription is designed to increase buck ratios back within special management criteria. Extensive landowner input has also indicated a strong preference for license reduction.

Population

The 2013 postseason population estimate was about 6,800 mule deer. This herd consistently remained above objective for several years (due to unsold licenses and a lack of public access) until substantial winter mortality occurred in bio-year 2010. This herd has since been on a declining trend as fawn production/survival has declined to moderate levels, and over-winter fawn survival and recruitment appears to be poor.

The "Semi Constant Juvenile - Semi Constant Adult Mortality Rate" (SCJ-SCA) spreadsheet model was chosen for the post-season population estimate of this herd. This model essentially had the lowest relative AIC (84) and most accurately depicted population trend based on field personnel perceptions and extensive landowner input. This model is considered to be of medium quality based on model fit, although managers strongly concur with simulated population trend. Regardless, given consistently inadequate classification sample sizes, observed buck ratios may not be accurate and therefore should not be used as a primary basis for assessing model quality.

Management Summary

The hunting season in this area has traditionally run from October $1^{\text {st }}$ to October $14^{\text {th }}$. These season dates have generally been adequate to meet landowner desires while allowing a reasonable harvest. For 2014, the Department decreased the Type 1 quota by 200 licenses. In addition, the Type 6 licenses were removed.

If we attain the projected harvest of 240 individuals and experience normal fawn productivity, the predicted 2014 postseason population will likely increase slightly to 6,900 mule deer, which is 24% below objective.

Mule Deer (MD755) - North Converse
HA 22
Revised - 98

2013 - JCR Evaluation Form

SPECIES: Mule Deer		PERIOD: 6/1/2013-5/31/2014	
HERD: MD756 - SOUTH CONVERSE			
HUNT AREAS: 65		PREPARED BY: HEATHER	

Population Size - Postseason

\square MD756-POPULATION - MD756 - OBJECTIVE

Harvest

Number of Hunters

Harvest Success
\square MD756 - Hunter Success \% $\quad{ }_{\%}^{\text {MD756 - Active License Success }}$

Active Licenses

\square MD756 - Days

Postseason Animals per 100 Females

2008-2013 Postseason Classification Summary

Year	Post Pop	for Mule Deer Herd MD756-SOUTH CONVERSE																
		MALES				FEMALES		JUVENILES		Tot Cls	$\begin{aligned} & \mathrm{Cls} \\ & \mathrm{Obj} \end{aligned}$	Males to 100 Females				Young to		
		Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	8,133	63	183	246	23\%	558	53\%	256	24\%	1,060	776	11	33	44	± 4	46	± 4	32
2009	6,985	57	149	206	20\%	557	55\%	243	24\%	1,006	696	10	27	37	± 4	44	± 4	32
2010	6,126	84	154	238	19\%	720	58\%	287	23\%	1,245	585	12	21	33	± 3	40	± 3	30
2011	7,056	83	167	250	19\%	612	47\%	441	34\%	1,303	778	14	27	41	± 4	72	± 5	51
2012	5,720	89	163	252	20\%	693	55\%	318	25\%	1,263	720	13	24	36	± 3	46	± 4	34
2013	4,875	64	90	154	17\%	528	57\%	245	26\%	927	719	12	17	29	± 3	46	± 4	36

2014 HUNTING SEASONS SOUTH CONVERSE MULE DEER (MD756)

| Hunt
 Area | Type | Date of Seasons
 Opens | Closes | Quota |
| :--- | :--- | :--- | :--- | :--- | Limitations | Oct. 15 | Oct. 21 | |
| :--- | :--- | :--- |
| 65 | | Oeneral license; antlered mule deer or any |
| Archery | Sep. 1 | Sep. 30 |

Region J Nonresident Quota: 900

Management Evaluation

Current Postseason Population Management Objective: 12,000
Management Strategy: Private Land
2013 Postseason Population Estimate: 4,900
2014 Proposed Postseason Population Estimate: 4,900

The South Converse Mule Deer Herd Unit has a postseason population management objective of 12,000 deer. The herd is managed using the private land management strategy, as buck ratios are difficult to influence with hunting seasons as the majority of mule deer occupy private lands.. The objective and management strategy were last revised in 2013.

Herd Unit Issues

Hunting access within the herd unit is marginal, with tracts of public land and national forest interspersed with predominantly private lands. The main land use is traditional ranching and grazing of livestock, with agricultural fields that have the potential for damage issues when big game are abundant. Doe/fawn licenses have historically been issued to address damage, but are not currently necessary for mule deer. Disease issues are a concern within this herd unit in particular, as the prevalence of Chronic Wasting Disease (CWD) is higher here than any other area in Wyoming or adjacent states. Research investigating population-level effects of recently concluded its fourth and final year within the herd unit. Please refer to Appendix A of this report for further information regarding CWD and ongoing research in the South Converse Herd Unit.

Weather

The winter of 2010-2011 was very harsh throughout the herd unit. Overwinter mortality was above average and losses from all age classes of mule deer continued through spring. Conditions were warm and dry for the herd unit in 2011 and shrub production was below average, resulting
in poor nutrition of mule deer entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 2011-2012 which likely had negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and extremely poor forage conditions contributed to very low fawn production and survival. The winter of 2012 continued the trend with very low snow accumulation and snow pack. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013. Despite improved conditions during the growing season, fawn production and survival were still very poor. In early October 2013, winter storm "Atlas" blanketed the herd unit with 12-36" of wet snow. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30-year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

This herd unit has three established habitat transects that measure production and utilization on True Mountain Mahogany (Cercocarpus montanus); however no data were collected in 2013. Comparable transects measured in 2013 in the adjacent Bates Hole Mule Deer Herd Unit showed below-average production and moderate utilization on True Mountain Mahogany. It is thus presumed that below-average shrub and herbaceous plant production were prevalent in the South Converse Herd Unit. As a result, lactating does and fawns in particular are likely to have suffered diminished nutrition during the last growing season.

Field Data

Fawn ratios were moderate in this herd from 2000-2007, and the population fluctuated between approximately 8,000 and 12,000 deer during this time period. The general license season during this time period was 11 days, and issuance of doe/fawn licenses ranged from 50 to 400 licenses. A more liberal season was instituted in 2008, lengthening the season to 17 days and offering 200 doe/fawn licenses. From 2008-2013, fawn ratios were extremely poor (40s per 100 does), with the exception of 2011 when the fawn ratio spiked to 72 fawns per 100 does. The population has gradually declined since 2008 from approximately 8,000 to 5,000 deer. In accordance, the general license season was shortened to 7 days and doe/fawn licenses were eliminated.

Buck ratios within the South Converse Herd historically average in the 30s-40s per 100 does, exceeding management goals. These ratios seem counterintuitive, as current CWD research references higher prevalence in males than females (Farnsworth et al, 2005). High buck ratios in this unit are a function of limited access to hunting on private lands, where a minimal level of harvest pressure on bucks is typical. In 2013, the buck ratio dropped to a 15 -year low of 29 bucks per 100 does.

Since 2008, bucks classified in the South Converse Mule Deer Herd Unit have been further categorized based on antler size (see Figure 1). 2009 represented the best distribution of mature buck classes, with 58% Class I (small), 33% Class II (medium), and 9% Class III (large) bucks. Bucks classified in 2013 showed a decrease in antler quality compared to previous years. Class III bucks represented 9% of the total classified, but Class II bucks represented only 19% of those surveyed, leaving the majority (72%) of bucks classified as smaller, Class I bucks. This skew towards smaller and presumably younger bucks may be due to greater harvest pressure on larger bucks, or fewer bucks in older age classes resulting from CWD and other sources of mortality.

Bio- Year	Total Class N for HA	\# Bucks Classified					Buck Ratios per 100 Females					
		Ylng	$\begin{gathered} \hline \text { Class } \\ \text { I } \\ \hline \end{gathered}$	Class II	Class	Total	Ylng	$\begin{gathered} \hline \text { Class } \\ \text { I } \\ \hline \end{gathered}$	Class II	Class III	All Adult	Total
2008	1,060	63	$\begin{gathered} 136 \\ (72 \%) \end{gathered}$	$\begin{gathered} 43 \\ (23 \%) \end{gathered}$	$\begin{gathered} 4 \\ (2 \%) \end{gathered}$	246	11	24	8	1	33	44
2009	1,006	57	$\begin{gathered} 98 \\ (65 \%) \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ (28 \%) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (7 \%) \\ \hline \end{gathered}$	206	10	18	7	2	27	37
2010	1,245	84	$\begin{gathered} 89 \\ (58 \%) \end{gathered}$	$\begin{gathered} 51 \\ (33 \%) \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ (9 \%) \end{gathered}$	238	12	12	7	2	21	33
2011	1,303	83	$\begin{gathered} 99 \\ (59 \%) \end{gathered}$	$\begin{gathered} 57 \\ (34 \%) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (7 \%) \end{gathered}$	250	14	16	9	2	27	41
2012	1,463	111	$\begin{gathered} 124 \\ (68 \%) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ (20 \%) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (11 \%) \end{gathered}$	291	14	16	5	3	23	37
2013	927	64	$\begin{gathered} 65 \\ (72 \%) \end{gathered}$	$\begin{gathered} 17 \\ (19 \%) \end{gathered}$	$\begin{gathered} 8 \\ (9 \%) \end{gathered}$	154	12	12	3	2	17	29

Figure 1. Antler classification analysis within the South Converse Mule Deer Herd Unit, 2008-2013.

Harvest Data

Hunter success in this herd averaged between 50 and 60 percent from 1998-2008. Harvest success has been much lower in recent years (32-42\%) with declines in deer numbers, and was 36% in 2013. Hunter days per animal generally climbed from 1998 to 2011 from 5.1 to 12.1 days. Days per animal improved slightly in 2012, which is likely due in part to the previous year's higher fawn production. In 2013 hunter days increased again, due in part to difficulties with poor weather and resulting poor access. Harvest success and hunter days are not expected to improve in this herd unit until fawn production improves and enhances the growth rate of this population over consecutive years.

Population

The 2013 postseason population estimate was approximately 4,900 and trending downward from an estimated high of 14,600 deer in 1998. Rates of adult survival were added to the model for 2010-2013 utilizing data collected as part of a graduate study of Chronic Wasting Disease within the herd unit. These data helped refine the model, making confidence in population estimates stronger.

The "Time-Specific Juvenile Survival - Constant Adult Survival" (TSJ,CA) spreadsheet model was chosen for the postseason population estimate of this herd. This model seemed the most representative of the herd, as it selects for higher juvenile survival during years when field personnel observed more favorable environmental and habitat conditions. The simpler models (CJ,CA and SCJ,CA) select for a very low juvenile survival rate, which does not seem feasible for this herd. All three models follow a trend that seems representative for the herd unit. However, the CJ,CA and SCJ,CA models estimate a larger population overall which do not seem realistic compared to historic and current perceptions of field personnel. While the TSJ,CA model has the highest AIC, it is still within one order of magnitude of the other model AICs. With the addition of survival data from collared deer, the model is considered to be of good quality.

Management Summary

Opening day for hunting the South Converse Mule Deer Herd Unit has traditionally been October $15^{\text {th }}$, with closing dates that have changed to offer greater or lesser opportunity depending on the management direction desired. In recent years, general licenses have been valid for antlered mule deer only. Doe/fawn licenses are offered in years the herd is above management objective, or in cases where agricultural damage is an issue. The 2014 hunting season will consist of a short, seven-day season with no doe/fawn licenses, as the population is at a historic low. Until habitat conditions and weather allow for higher fawn production, this population will likely remain low and seasons will remain conservative.

If we attain the projected harvest of 255 bucks and fawn production/survival remain poor, this herd will likely remain stable but low. The predicted 2014 postseason population size of the South Converse Herd is approximately 4,900 mule deer, which is 59% below objective.

Citations

Farnsworth, M.L., L.L. Wolfe, N.T. Hobbs, K.P. Burnham, E.S. Williams, D.M. Theobald, M.M. Conner, \& M.W. Miller. Human Land Use Influences Chronic Wasting Disease Prevalence in Mule Deer. Ecological Applications, 15(1): 119-126.

FIGURES

APPENDIX A

Chronic Wasting Disease in the South Converse Mule Deer Herd Unit: Prevalence and Management Concerns

The South Converse Mule Deer Herd Unit (Wyoming Hunt Area 65) has the highest prevalence of Chronic Wasting Disease (CWD) in Wyoming. High prevalence of CWD in mule deer is of particular concern to local wildlife managers, as mule deer herds statewide have declined due to a number of environmental factors. Managers are concerned that CWD may be an additive factor influencing mortality rates in the South Converse Herd, as it may be degrading the health of breeding-age females, suppressing conception rates, and affecting health and survivorship of neonates. Additionally, CWD may be adversely affecting deer survival due to behavioral changes - rendering infected deer more vulnerable to natural causes of mortality such as predation or exposure.

Hunter-harvested deer have been tested in this herd unit since 2001. It should be noted that hunter-harvested samples do not represent a random sample of this population. Rather, samples are biased towards younger age-class males, as hunting seasons have focused on antlered deer, and hunters who harvest larger mature bucks often decline sampling to preserve them for taxidermy. Thus, prevalence in hunter-harvested deer may not be representative of the herd as a whole, and may be biased low sa CWD prevalence generally increases with age-classes.

Since 2001, prevalence of CWD in hunter-harvested mule deer has increased significantly in the South Converse Mule Deer Herd, while the population has concurrently decreased (Table 1, Figure 1). Considering CWD is ultimately fatal in cervids, higher prevalence is suspected of having more adverse and perhaps additive impacts at the population level - either directly or indirectly. However, it is difficult to discern or quantify the impacts of CWD on this population without further study and analysis of recently completed research.

A collaborative research project was initiated in 2010 to investigate the effects of CWD on the South Converse Mule Deer Herd. Using GPS-collared deer, a number of variables have been explored to better understand the relationship between CWD and the dynamics of the population. This research is a cooperative effort of the United States Geological Survey, the University of Wyoming, and the Wyoming Game and Fish Department, and recently concluded its fourth and final field season. Results should become available and published as analysis is completed.

Table 1. CWD surveillance in hunter-harvested mule deer in the South Converse Herd Unit, 2001-2013.

Year	Total Harvest	N Tested	N Positive	CWD Prevalence
2001	885	81	12	$\mathbf{1 5 \%}$
2002	825	98	23	$\mathbf{2 4 \%}$
2003	733	155	46	$\mathbf{3 0 \%}$
2004	533	52	14	$\mathbf{2 7 \%}$
2005	461	88	29	$\mathbf{3 3 \%}$
2006	555	81	32	$\mathbf{4 0 \%}$
2007	729	74	30	$\mathbf{4 1 \%}$
2008	708	44	19	$\mathbf{4 3 \%}$
2009	425	48	20	$\mathbf{4 2 \%}$
2010	365	42	20	$\mathbf{4 7 \%}$
2011	303	35	20	$\mathbf{5 7 \%}$
2012	357	30	14	$\mathbf{4 7 \%}$
2013	252	41	18	$\mathbf{4 4 \%}$

Figure 1. CWD prevalence of hunter-harvested mule deer and postseason population estimates for the South Converse Mule Deer Herd Unit, 2001-2013.

Mule Deer - South Converse Hunt Area 65
Casper Region Revised 3/94

2013 - JCR Evaluation Form

SPECIES: Mule Deer		PERIOD: 6/1/2013-5/31/2014
HERD: MD757 - BATES HOLE/HAT SIX		
HUNT AREAS: 66-67		PREPARED BY: HEATHER

Population Size - Postseason

\square MD757-POPULATION - MD757-OBJECTIVE

Harvest

Number of Hunters

Harvest Success
\square MD757 - Hunter Success \% $\square \begin{aligned} & \text { MD757 - Active License Success } \\ & \%\end{aligned}$

Active Licenses

\square MD757 - Days

Postseason Animals per 100 Females

2014 HUNTING SEASONS

BATES HOLE / HAT SIX MULE DEER (MD757)

Hunt	Date of Seasons			Quota	Limitations
Area	Type	Opens	Closes		
66		Oct. 15	Oct. 21		General license; antlered mule deer three (3) points or more on either antler or any white-tailed deer
67					CLOSED
Archery		Sep. 1	Sep. 30		Refer to license type and limitations in Section 2.

Management Evaluation

Current Postseason Population Management Objective: 12,000
Management Strategy: Recreational
2013 Postseason Population Estimate: 5,100
2014 Proposed Postseason Population Estimate: 5,000

The Bates Hole / Hat Six Mule Deer Herd Unit has a postseason management objective of 12,000 deer. The herd is managed using the recreational management strategy, with a goal of maintaining postseason buck ratios between 20-29 bucks per 100 does. The objective and management strategy were last revised in 1990, and will be formally reviewed in 2015.

Herd Unit Issues

Hunting access within the herd unit is very good, with large tracts of public lands as well as a sizeable hunter management area. The main land use within the herd unit is traditional ranching and grazing of livestock. Very little industrial or energy development exists in this herd unit. Area 67, which includes the north-central portion of Casper Mountain, remains closed to hunting. Residents with small properties that dominate the hunt area are strongly opposed to hunting in their portion of the herd unit.

Weather

The winter of 2010-2011 was severe throughout the herd unit and likely resulted in higher mortality of mule deer. Conditions were warm and dry for the herd unit in 2011 and shrub
production was below average, resulting in poor nutrition of mule deer entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 20112012 which likely had negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Fawn survival over the severely dry summer and winter was low, as evidenced by extremely low yearling buck ratios in 2013. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013. In early October 2013, winter storm "Atlas" blanketed the herd unit with $12-36$ " of wet snow. Lingering snow and resulting muddy conditions made accessing deer difficult in many locations, and it was apparent winter storm Atlas had a negative impact on hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30 -year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

This herd unit has several established transects that measure production ($\mathrm{N}=6$) and utilization $(\mathrm{N}=7)$ on True Mountain Mahogany (Cercocarpus montanus). Average leader growth in 2013 on mahogany was 0.59 inches (14.99 mm). While production was improved compared to 2012, average leader growth in 2013 was still considered below average. Utilization was moderate, with an average of 20% leaders browsed per shrub. Below-average herbaceous plant production may have been the result of plant senescence despite good moisture during the growing season. However, some portions of the herd unit appeared to be in better condition resulting from more frequent rain events - in particular those areas south of Muddy Mountain and at slightly higher elevation in Bates Hole. Better habitat conditions in this portion of the herd unit may have improved spring and summer fawn survival, and may account for the higher fawn ratio in this herd unit compared to adjacent units.

Field Data

Fawn production/survival were relatively good in this herd from 1998-2005. The population remained relatively stable, until increased issuance of doe/fawn licenses and longer seasons decreased the herd from approximately 9,300 to 7,000 deer. From 2006-present, fawn production/survival has been were moderate to poor. The population began to decline, and with it doe/fawn licenses were reduced and then eliminated. In 2013 fawn ratios were again poor, at 56:100 does. Despite the elimination of doe/fawn hunting and the restrictions placed on buck harvest, this population continues to decline.

Buck ratios for the Bates Hole / Hat Six Herd historically average in the mid-20s, though they have occasionally exceeded recreational limits and risen into the low to mid 30's. In more recent years, the buck ratio has declined, reaching a low of 17 per 100 does in 2012. Buck ratios improved slightly in 2013 to 20 per 100 does. Many landowners and hunters have complained of too much hunter pressure within the herd unit and a lack of mature bucks. Some have voiced a desire to change the herd unit from a general license area to limited quota as a means to improve buck ratio. In an attempt to improve yearling buck survival, an antler-point restriction was added in 2013, requiring harvested bucks to be three points or better on one side. This in addition to poor weather and access conditions reduced the overall buck harvest by 33% from 2012 to 2013. The antler-point restriction allowed yearling bucks the chance to graduate into more mature age classes while reducing overall harvest pressure on the male segment of the herd over the next year. As a result, yearling buck ratios went from 4 in 2012 to 10 in 2013 despite mediocre fawn production. However, improved fawn production and survival will be necessary to enhance population growth for the herd in future years.

Since 2008, bucks classified in Area 66 have been categorized based on antler size (see Figure 1). 2008 represented the best distribution of mature buck classes, with 50% Class I (small), 36% Class II (medium), and 14\% Class III (large) bucks. Bucks classified from 2010-2013 showed a decrease in antler quality, as the percentage of Class I bucks increased and percentage of Class II bucks decreased. It should come as no surprise that Class I bucks increased from 2012 to 2013 with the addition of the antler-point restriction to the 2013 hunting season. Class III bucks have consistently remained just under 10% of those surveyed from 2009-2013. This is perhaps surprising at first glance, considering surveys occur post-season, that Area 66 is a general license hunt area, and that hunting pressure is assumed to be high. It may be that hunters in a general license area have low expectations of trophy quality and are thus more likely to harvest smaller bucks as the opportunity arises. It may also be that some Class III bucks, despite their discovery during post-season surveys, are more difficult for hunters to find during hunting season. This concept seems unlikely to managers considering the vast network of roads and lack of escapement habitat in some popular portions of the hunt area. However, there still remain places on private lands where mule deer remain protected from harvest. Further research would be necessary to isolate what factors are contributing to the consistent percentage of Class III bucks observed within the herd unit.

| | Total | \# Bucks Classified | | | | | Buck Ratios per 100 Females | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bio-
 Year | Class N
 for HA | Ylng | Class
 I | Class
 II | Class
 III | Total | Ylng | Class
 I | Class
 II | Class
 III | All
 Adult | Total |
| 2008 | 1,254 | 75 | 57
 (50%) | 41
 (36%) | 16
 (14%) | 189 | 12 | 9 | 6 | 2 | 18 | 29 |
| 2009 | 1,320 | 59 | 61
 (54%) | 41
 (37%) | 10
 (9%) | 171 | 8 | 8 | 6 | 1 | 15 | 23 |
| 2010 | 1,479 | 82 | 49
 (49%) | 42
 (42%) | 9
 (9%) | 182 | 9 | 5 | 5 | 1 | 11 | 20 |
| 2011 | 1,248 | 47 | 52
 (56%) | 33
 (36%) | 7
 (8%) | 139 | 7 | 8 | 5 | 1 | 14 | 21 |
| 2012 | 1,272 | 28 | 55
 (59%) | 30
 (32%) | 9
 (9%) | 122 | 4 | 8 | 4 | 1 | 13 | 17 |
| 2013 | 1,483 | 86 | 50
 (61%) | 25
 (30%) | 7
 (9%) | 168 | 10 | 6 | 3 | 1 | 10 | 20 |

Figure 1. Antler classification analysis for Area 66 within the Bates Hole/Hat Six Mule Deer Herd Unit, 2008-2013.

Harvest Data

Hunter success in this herd has fluctuated as a function of population size and season length. In recent years, harvest success was highest when the population was higher and the season was longer. Harvest success has decreased in recent years and hunter days have increased, as the population declined and the season was shortened. No significant female harvest has been prescribed since 2007. The season was reduced to 8 days in 2010 and then to 7 days in 20112012. Season length remained at 7 days and a 3-point or better antler point restriction was added in 2013. Harvest success decreased from 32% in 2012 to 26% in 2013 - due in part to the more restrictive season on bucks as well as issues with snow, mud, and poor access conditions. Overall harvest has declined as seasons have grown more conservative. With the addition of the antler-point restriction, harvest declined 33% from 241 in 2012 to 165 in 2013.

Population

The 2013 postseason population estimate was approximately 5,100 and has been declining in recent years, after the herd reached a high of about 6,800 deer in 2008. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

The "Time-Specific Juvenile, Constant Adult (TSJ, CA) spreadsheet model was chosen for the postseason population estimate of this herd. This model seemed the most representative of the herd in terms of recent trends, though some earlier years in the model are not consistent with historic estimates from that era. The TSJ,CA model selects for higher juvenile survival when
field observations confirm that overwinter conditions were very mild (i.e. 2005-2006). The TSJ, CA model also adjusts juvenile survival to optimize model fit based on observed buck ratios. Managers are confident in the accuracy of observed buck ratios in this herd unit, as sample sizes are typically very good and coverage is very thorough. The CJ,CA model depicts a herd that is larger than managers suspect. The SCJ,SCA model predicts a similar population size and trend as the TSJ,CA model for more recent years, but does not align as well to observed buck ratios. The TSJ, CA model ultimately appears to be the best representation relative to the perceptions of managers and field personnel, is of good quality, and follows trends with license issuance and harvest success.

Management Summary

Opening day for hunting the Bates Hole / Hat Six Mule Deer Her has traditionally been October $15^{\text {th }}$, with closing dates that have changed to offer greater or lesser opportunity depending on the management direction desired. General licenses have been valid only for antlered mule deer since 2000. Doe/fawn licenses have been offered in years when winter range shrub utilization has been excessive. A short, seven-day season with no doe/fawn licenses will be instated for 2014. The 2014 season will be the second year utilizing an antler point restriction (APR) of three points or more on a side for this herd unit. The required selectivity of an APR season will again allow yearling bucks to be recruited into mature age classes. While the APR harvest regime may improve buck ratios and quality in the short term by lowering overall harvest on bucks, it is fawn productivity and survival that must improve markedly for this herd to grow as a whole.

If we attain the projected harvest of 175 deer with fawn ratios similar to the last five years, this herd will continue to decline slowly. The predicted 2014 postseason estimate for the Bates Hole Hat Six Herd is approximately 5,000 animals, which is 58% below objective.


```
_Uult Survival Rates
ه0
Annual Juvenile Survival Rates
```


FIGURES

Mule Deer - Bates Hole/Hat Six
Hunt Area 66, 67
Casper Region
Revised 2/94

2013 - JCR Evaluation Form

SPECIES: Mule Deer		PERIOD: 6/1/2013-5/31/2014
HERD: MD758 - RATTLESNAKE		
HUNT AREAS: 88-89		PREPARED BY: HEATHER

Population Size - Postseason

```
\(\square\) MD758-POPULATION - MD758-OBJECTIVE
```


Harvest

Number of Hunters

Harvest Success
\square MD758 - Hunter Success \% $\quad \begin{aligned} & \text { MD758 - Active License Success } \\ & \%\end{aligned}$

Active Licenses

Days per Animal Harvested
\square MD758 - Days

Postseason Animals per 100 Females

2008-2013 Postseason Classification Summary																		
for Mule Deer Herd MD758-RATTLESNAKE																		
		MALES				FEMALES		JUVENILES		Tot Cls	Cls Obj	Males to $\mathbf{1 0 0}$ Females				Young to		
Year	Post Pop	YIg	Adult	Total	\%	Total	\%	Total	\%			YIng	Adult	Total	Conf Int	$\begin{gathered} 100 \\ \text { Fem } \end{gathered}$	$\begin{aligned} & \text { Conf } \\ & \text { Int } \end{aligned}$	100 Adult
2008	3,822	94	185	279	19\%	749	51\%	434	30\%	1,462	924	13	25	37	± 3	58	± 4	42
2009	3,931	34	155	189	20\%	469	50\%	271	29\%	929	922	7	33	40	± 4	58	± 5	41
2010	3,690	49	120	169	19\%	487	54\%	252	28\%	908	797	10	25	35	± 3	52	± 4	38
2011	3,791	53	196	249	23\%	570	53\%	258	24\%	1,077	781	9	34	44	± 4	45	± 4	32
2012	3,497	24	81	105	18\%	333	56\%	156	26\%	594	830	7	24	32	± 4	47	± 5	36
2013	3,826	14	77	91	14\%	376	57\%	198	30\%	665	671	4	20	24	± 3	53	± 5	42

2014 HUNTING SEASONS RATTLESNAKE MULE DEER (MD758)

Hunt Area	Type	Date of Seasons Opens	Closes	Quota	Limitations
88		Oct. 15	Oct. 21		General license; antlered mule deer or any white-tailed deer
	6	Oct. 15	Nov. 30	25	Limited quota licenses; doe or fawn valid on private land
89	1	Oct. 15	Oct. 31	75	Limited quota licenses; antlered deer
Archery		Sep. 1	Sep. 30		Refer to license type and limitations in Section 2

Hunt Area	Type	Quota change from 2013
88	6	-25
89	1	-50
Total	1	-50
	6	-25

Management Evaluation

Current Postseason Population Management Objective: 5,500
Management Strategy: Special
2013 Postseason Population Estimate: 3,800
2014 Proposed Postseason Population Estimate: 3,700

The Rattlesnake Mule Deer Herd Unit has a postseason population objective of 5,500 deer. The herd is managed using the special management strategy, with the goal of maintaining postseason buck ratios between 30-45 bucks per 100 does. Management of this herd unit and interpretation of harvest data can be perplexing, with different management directions for Area 88 versus 89 . The objective and management strategy were last revised in 1985, and will be formally reviewed in 2015.

Herd Unit Issues

Hunting access within the herd unit is moderate. While there are large tracts of public lands and several large walk-in areas in Area 89, there are also many parcels of private land with restricted access. Hunt Area 88 is dominated by private lands with several small public land parcels.

Harvest pressure is consistently maintained in Area 88 to address potential damage issues on irrigated agricultural fields. Traditional ranching and grazing are the primary land use over the whole unit, with scattered areas of oil and gas development. Periodic disease outbreaks (i.e. hemorrhagic diseases) are possible in this herd and can contribute to population declines when environmental conditions are suitable.

Weather

The winter of 2010-2011 was severe throughout the herd unit and likely resulted in higher mortality of mule deer. Conditions were warm and dry for the herd unit in 2011 and shrub production was below average, resulting in poor nutrition of mule deer entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 20112012 which likely had negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Fawn survival over the severely dry summer and winter was low, as evidenced by extremely low yearling buck ratios in 2013. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013. In early October 2013, winter storm "Atlas" blanketed the herd unit with $12-36$ " of wet snow. Lingering snow and resulting muddy conditions made accessing deer difficult in many locations. Travel conditions improved toward the end of hunting seasons, but by then it was apparent winter storm Atlas had a negative impact on hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30 -year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

This herd unit has no established habitat transects that measure production and/or utilization on shrub species that are preferred browse of mule deer. Additionally, there are no comparable habitat transects in neighboring herd units to reference. Anecdotal observations and discussions with landowners in the region indicate that summer and winter forage availability was fairly average in 2013. Herbaceous forage species were observed to be in good condition compared to the very poor growth year of 2012. Improved range conditions may have contributed to better fawn ratios observed in late summer 2013, though they were still poor compared to historic trends.

Field Data

Fawn production/survival was high in this herd from 1998-2005, and the population grew in stages during this time period. License issuance was modest, until a larger number of doe/fawn licenses were introduced in Area 88 from 2003-2005. Fawn ratios were then moderate to poor from 2006-2013, and the population gradually declined over these years. Issuance of doe/fawn licenses was reduced incrementally in accordance with this decline. Harsh winter conditions in 2010-11 combined with severe drought in 2012 produced the lowest fawn ratios in over 15 years for the herd unit. Fawn ratios recovered slightly in 2013, but were still poor at 53:100 does. Only 25 doe/fawn licenses will be issued in Area 88 for 2014, as complaints of agricultural damage by mule deer are now virtually non-existent.

Buck ratios for the Rattlesnake Mule Deer Herd have been maintained consistently within special management parameters since 1999. As a result, hunters have developed high expectations for buck numbers and quality within this herd unit. Buck ratios for the herd are typically in the mid 30s per 100 does, but were as high as 44 bucks per 100 does in 2005 following several years of high fawn productivity. While this herd has dropped in overall numbers over the past six years, buck ratios have been maintained consistently in the 30s and low 40s by adjusting Area 89 license issuance accordingly. However, the buck ratio dropped below special management range to $24: 100$ does in 2013. Yearling buck ratios have been extremely low over the past few years, and recruitment of bucks into adult age classes has declined considerably. It can be difficult to maintain buck ratios over the entire herd unit, as Area 88 is managed for a low number of deer and Area 89 is managed for high mature buck ratios. Managers will continue to adjust license numbers in the herd unit so as to maintain the buck ratio within special management parameters and assure that an adequate proportion of mature bucks are available for harvest.

Since 2008, bucks classified in Area 89 have been categorized based on antler size (see Figure 1). 2009 represented the best distribution of mature buck classes, with 53% Class I (small), 39% Class II (medium), and 9\% Class III (large) bucks. Bucks classified in 2013 showed a marked decrease in antler quality compared to previous years. Class III bucks only represented 1% of the total classified, while Class I and Class II bucks represented 74% and 25% of those surveyed, respectively. With hunter expectations high for trophy-quality hunting, managers consider this drop in trophy quality as further justification to reduce Type 1 licenses for the 2014 hunting season.

	Total	\# Bucks Classified					Buck Ratios per 100 Females					
Year	Class N for HA	Ylng	$\begin{gathered} \text { Class } \\ \text { I } \end{gathered}$	Class II	Class III	Total	Ylng	Class I	Class II	Class III	All Adult	Total
2008	1,220	71	$\begin{gathered} 126 \\ (74 \%) \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ (23 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (3 \%) \\ \hline \end{gathered}$	242	11	20	6	1	27	38
2009	848	31	$\begin{gathered} 74 \\ (53 \%) \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ (39 \%) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (9 \%) \end{gathered}$	171	7	17	13	3	33	40
2010	778	38	$\begin{gathered} 59 \\ (54 \%) \end{gathered}$	$\begin{gathered} 45 \\ (41 \%) \end{gathered}$	$\begin{gathered} 6 \\ (5 \%) \end{gathered}$	148	9	14	11	1	26	35
2011	1,009	48	$\begin{gathered} 114 \\ (62 \%) \end{gathered}$	$\begin{gathered} 61 \\ (33 \%) \end{gathered}$	$\begin{gathered} 9 \\ (5 \%) \end{gathered}$	232	9	21	11	2	34	43
2012	503	17	$\begin{gathered} 61 \\ (84 \%) \end{gathered}$	$\begin{gathered} 10 \\ (14 \%) \end{gathered}$	$\begin{gathered} 2 \\ (3 \%) \end{gathered}$	90	6	22	4	1	26	32
2013	548	11	$\begin{gathered} 53 \\ (74 \%) \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ (25 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1 \%) \\ \hline \end{gathered}$	83	4	17	6	0	24	27

Figure 1. Antler classification analysis for Area 89 within the Rattlesnake Mule Deer Herd Unit, 20082013.

Harvest Data

License success in this herd unit is typically in the $60-70^{\text {th }}$ percentile. Overall harvest success has declined the last three years from 55% to 48% to 40% and days per animal has increased. It can be difficult to use days per animal as a reference to population trends in this herd unit however, as hunters in Area 89 tend to be more selective of bucks and thus take more time to harvest a deer. Selectivity and low deer numbers likely combined in recent years to contribute to higher harvest days. License reductions in 2013 did not improve harvest success indicating fewer deer were available to fewer hunters. Hunter satisfaction also declined from 79% in 2012 to 56% in 2013. Thus, managers plan to reduce licenses further in 2014 in an effort to improve license success and improve buck ratios in the herd unit following exceptionally poor fawn productivity.

Population

The 2013 postseason population estimate was approximately 3,800 and trending downward from an estimated high of 6,800 deer in 2005. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

The "Semi-Constant Juvenile, Constant Adult" (SCJ,CA) spreadsheet model was selected for the postseason population estimate of this herd. This model seemed most representative of the herd, as it mirrors fluctuations in herd size observed by field personnel in previous years. The simpler model (CJ,CA) overestimates herd size while the more complicated (TSJ,CA) model
underestimated herd size and displays some trends that do not match with field observations. The SCJ,CA model was used to apply lower constraints on juvenile survival from 2010-2012. These constraints match observed trends of low fawn ratios followed by very poor yearling buck ratios, implying over-winter fawn survival was poor. The AIC for the SCJ, CA model is the higher than the CJ,CA model due only to penalties incurred from constraining juvenile survival in these three years. The SCJ,CA model appears to be the best representation relative to the perceptions of managers on the ground and follows trends with license issuance and harvest success, and is considered to be of fair quality.

Management Summary

Traditional season dates in this herd run from October $15^{\text {th }}$ through October $31^{\text {st }}$, and November $30^{\text {th }}$ for Area 88 Type 6 licenses. The same season dates will be applied to the 2014 hunting season, with a reduction of Area 89-Type 1 licenses to track with poor fawn ratios and declining buck ratios. Area 88 Type 6 licenses will be reduced and will remain valid on private land only. The 2014 season thus includes a total of 75 Type 1 licenses in Area 89, a general season in Area 88 for antlered mule deer or any white-tailed deer, and 25 Type 6 licenses valid in Area 88 on private land. Goals for 2014 are to improve deer numbers gradually towards objective while giving time for habitats to recover, improve buck ratios, and increase hunter success.

If we attain the projected harvest of 115 deer with fawn ratios similar to the five-year average, this herd will increase slightly in number. The predicted 2013 postseason population size for the Rattlesnake Mule Deer Herd Unit is approximately 3,700 deer, which is 33% below objective.

FIGURES

sәрешә」 00t/sәеш ןеъо」

Mule Deer - Rattlesnake
Hunt Areas 88, 89
Casper Region
Revised 4/88

2013 - JCR Evaluation Form

SPECIES: Mule Deer		PERIOD: 6/1/2013-5/31/2014	
HERD: MD759 - NORTH NATRONA			
HUNT AREAS: 34		PREPARED BY: HEATHER	

Population Size - Postseason

```
\(\square\) MD759 - POPULATION - MD759 - OBJECTIVE
```


Harvest

Number of Hunters

Harvest Success

MD759 - Hunter Success \% MD759 - Active License Success

Active Licenses

Days per Animal Harvested
\square MD759 - Days

Postseason Animals per 100 Females

2008－2013 Postseason Classification Summary

$\begin{aligned} & \text { ㅇ } \\ & \text { O } \\ & \stackrel{0}{0} \end{aligned}$	$\bigcirc \stackrel{\text { ¢ }}{\square}$	¢ ¢ ¢
	${ }_{0}^{\circ} \mathrm{O}$	
	은 ¢ ¢ ¢ ¢	
	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\circ}}$	
	言	
	$\stackrel{\text { 잗 }}{ }$	
$\stackrel{\square}{0}$		읏
$\stackrel{\square}{\circ}$		¢
$\stackrel{\text { un }}{\stackrel{4}{3}}$	ஃ๐	
	－	
$\begin{aligned} & \text { 出 } \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{4}{4} \end{aligned}$	$\bigcirc \bigcirc$	たio io io io io io io io io
	$\stackrel{\text { ¢0 }}{\stackrel{\text { ® }}{\circ}}$	
$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{4}{\Sigma} \end{aligned}$	ஃ๐	
	$\stackrel{\text { ¢़ }}{\stackrel{\text { ¢ }}{\circ}}$	「 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
	$\begin{aligned} & \stackrel{\rightharpoonup}{\overrightarrow{3}} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	$\stackrel{\sim}{\sim} \sim_{\sim}^{\sim} \sim \sim$
	$\stackrel{0}{8}$	冎的大 N ¢ ¢ ¢
O 0 0 0 0 0		
	$\begin{aligned} & \stackrel{\grave{\varpi}}{\stackrel{0}{\infty}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	

2014 HUNTING SEASONS

NORTH NATRONA MULE DEER HERD (MD759)

Hunt Area	Date of Seasons			Quota	Limitations
	Type	Opens	Closes		
34	1	Oct. 15	Oct. 31	150	Limited quota licenses; antlered deer
Archery		Sep. 1	Sep. 30		Refer to license types and limitations in Section 2

Hunt Area	Type	Quota change from 2013
34	1	-100
	6	-50, license type removed

Management Evaluation

Current Postseason Population Management Objective: 6,500
Management Strategy: Special
2013 Postseason Population Estimate: 4,200
2014 Proposed Postseason Population Estimate: 4,200

The North Natrona Mule Deer Herd Unit has a postseason population management objective of 6,500 mule deer. The herd is managed using the special management strategy, with the goal of maintaining postseason buck ratios between $30-45$ bucks per 100 does. The objective and management strategy were last revised in 1988, and will be formally reviewed in 2014.

Herd Unit Issues

Hunting access within the herd unit is very good, with large tracts of public land as well as walkin areas available for hunting. The southeastern corner of the herd unit is the only area dominated by private lands. In this area, specific doe/fawn licenses have been added to address damage issues on irrigated agricultural fields. The main land use within the herd unit is traditional ranching and grazing of livestock. Industrial-scale developments, including oil and gas development, are limited and isolated within this herd unit.

Weather

The winter of 2010-2011 was severe throughout the herd unit and likely resulted in higher mortality of mule deer. Conditions were warm and dry for the herd unit in 2011 and shrub production was below average, resulting in poor nutrition of mule deer entering the winter of 2011-2012. Snow pack and resulting spring moisture was below average for the winter of 20112012 which had negative impacts on lactating does and their fawns. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Fawn survival over the severely dry summer and winter was low, as evidenced by extremely low yearling buck ratios in 2013. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013 in much of the herd unit, though the northeaster portion of the unit continued to suffer very dry conditions. In early October 2013, winter storm "Atlas" blanketed the herd unit with $12-36$ " of wet snow. Lingering snow and resulting muddy conditions made accessing deer difficult in many locations. Travel conditions improved toward the end of hunting seasons, but by then it was apparent winter storm Atlas had a negative impact on hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30 -year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

This herd unit contains five habitat transects which measure annual production and utilization of curl leaf mountain mahogany (Cercocarpus ledifolius). However, no new production or utilization data were collected on transects in 2013. Anecdotal observations during the summer growing season suggest range conditions were back near average, following extremely poor conditions during the drought of 2012. Habitat and forage conditions appeared more typical during the summer of 2013, and should provide a good food source for mule deer on winter ranges over the 2013-2014 winter.

Field Data

Fawn ratios were moderate (55-66 per 100 does) in this herd from 1998-2002, and license issuance during this time was higher with an emphasis on buck harvest. During the mild years of 2003-2005, fawn production/survival was quite high (73-89 per 100 does). License issuance was very moderate during this time, and the population grew to a high of approximately 5,500 animals. From 2006-present, fawn production/survival was moderate to poor, and reached a 15year low in 2012. Fawn production/survival recovered slightly in 2013 with 55:100, but was still poor compared to what is needed for population maintenance and/or growth. With continued
reductions in license issuance, the herd has been relatively stable near 4,000 animals from 20072013.

Buck ratios for the North Natrona Herd historically average in the mid 30s per 100 does. Type 1 license issuance remained stable at 350 from 2001-2011, as buck ratios stayed well within special management range. In 2012 Type 1 licenses were reduced to 250 , as buck ratios were on the lower cusp of special management. Observed buck ratios were again near the lower end of special management in 2013, with 32 bucks per 100 does. In addition, yearling buck ratios have declined the past two years as fawn production has been extremely poor. With yearling buck ratios of only 7 and 8 per 100 does in 2012 and 2013 respectively, recruitment of mature bucks has slowed considerably. This lack of recruitment will in turn reduce the mature buck ratio. While reported hunter satisfaction has remained the same from 2012 to $2013(\sim 68 \%)$, negative hunter comments began to surface within the harvest report in 2013. Hunters have high expectations of buck quality and availability within special management areas, and some hunters commented that the population in the North Natrona Herd was very poor. Until fawn production and survival improve, managers feel it is prudent to reduce Type 1 licenses for 2014, so those hunters who draw have the type of quality opportunity they have come to expect from this herd unit. Management goals for 2014 are to improve buck ratios and maintain them well within the range of special management.

Since 2008, classified bucks have been further categorized based on antler size (see Figure 1). 2010 represented the best distribution of mature buck classes, with 46% Class I (small), 37% Class II (medium), and 18\% Class III (large) bucks. Bucks classified in 2013 showed a marked decrease in antler quality compared to previous years. Class III bucks only represented 1% of the total classified, while Class I and Class II bucks represented 75% and 24% of those surveyed, respectively. With hunter expectations high for trophy-quality hunting, managers see this drop in trophy quality as further justification to reduce Type 1 licenses for the 2014 hunting season.

BioYear	Total Class N for HA	\# Bucks Classified					Buck Ratios per 100 Females					
		Ylng	$\begin{gathered} \text { Class } \\ \text { I } \\ \hline \end{gathered}$	Class II	Class	Total	Ylng	$\begin{gathered} \text { Class } \\ \text { I } \\ \hline \end{gathered}$	$\begin{gathered} \text { Class } \\ \text { II } \\ \hline \end{gathered}$	Class III	$\begin{gathered} \text { All } \\ \text { Adult } \end{gathered}$	Total
2008	1,023	59	$\begin{gathered} 111 \\ (73 \%) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ (24 \%) \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ (3 \%) \\ \hline \end{gathered}$	211	11	20	7	1	28	39
2009	1,009	51	$\begin{gathered} 87 \\ (60 \%) \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ (31 \%) \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ (9 \%) \end{gathered}$	195	9	16	8	2	26	35
2010	905	47	$\begin{gathered} 55 \\ (46 \%) \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ (37 \%) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ (18 \%) \\ \hline \end{gathered}$	167	10	12	9	4	25	35
2011	760	52	$\begin{gathered} 64 \\ (63 \%) \end{gathered}$	$\begin{gathered} 34 \\ (33 \%) \end{gathered}$	$\begin{gathered} 4 \\ (4 \%) \end{gathered}$	154	13	16	8	1	25	38
2012	868	36	$\begin{gathered} 91 \\ (78 \%) \end{gathered}$	$\begin{gathered} 20 \\ (17 \%) \end{gathered}$	$\begin{gathered} 6 \\ (5 \%) \end{gathered}$	153	7	18	4	1	23	30
2013	637	28	$\begin{gathered} 60 \\ (75 \%) \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ (24 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (1 \%) \end{gathered}$	108	8	18	6	0	23	32

Figure 1. Antler classification analysis for the North Natrona Mule Deer Herd Unit, 2008-2013.

Harvest Data

Hunter success in the North Natrona Mule Deer Herd Unit is typically in the $70-80^{\text {th }}$ percentile, and was 74% in 2013. While harvest success has remained average for the herd in recent years, days per animal have increased. Increasing days per animal typically indicate a shrinking population, as it takes hunters more time to find and harvest fewer animals. However survey totals, comments from hunters and landowners, and population modeling all indicate this herd has remained relatively stable. Thus, managers suspect hunters are being selective, as the herd has developed a reputation of having high quality mature bucks. Poor road and access conditions also may have contributed to an increase in hunter days during the 2013 season.

Tooth age data were collected from harvested bucks in the North Natrona Mule Deer Herd Unit in 2010 and 2013. Comparing data between years shows a consistency of hunter selection for mature bucks, with the average and median age increasing. In 2010, average age of tooth-aged bucks was 4.44 with a median age of 4.5 years ($\mathrm{N}=68$). In 2013, average age of tooth-aged bucks increased to 5.40 with a median age of $5.5(\mathrm{~N}=52)$. Average antler spread reported by hunters showed no change at all between data sets; both years showed an average antler spread of 21.2 inches. This suggests despite hunter selectivity for bigger bucks, availability of bucks has remained static in terms of antler size, despite the age increase of harvested bucks. Age increase may be due to changing distribution of bucks across age classes within the herd, where recent years with low fawn ratios have resulted in fewer bucks recruited into younger age classes. It may also be due to changes in habitat quality and resulting nutrition of mature bucks. Or, increased age but no change in reported antler spread may represent a shift genetically, whereby bucks must age further before their antler quality improves. Further research would be necessary to isolate why average and median age of harvested bucks has increased, but average antler spread has remained static. Regardless, this tooth-age data indicates past and current management prescription has resulted in most hunters harvesting prime-age bucks, which is consistent with management strategy.

Population

The 2013 postseason population estimate was approximately 4,200 and has been fairly stable for the past three years, after an estimated high of 5,200 deer in 2005. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

The "Constant Juvenile Survival - Constant Adult Survival" (CJ,CA) spreadsheet model was chosen for the postseason population estimate of this herd. This model is the simplest and appears to be most representative of trends within the herd. The CJ,CA model selects adult survival rates that seem reasonable for this herd, but only if the juvenile survival rate is increased
slightly. The lower constraint for juvenile survival was thus increased from 0.4 to 0.5 . Managers believe this to be an acceptable adjustment, as it is small and accounts for slightly milder habitat and winter conditions, and produces a trend that tracks with observed fawn and buck ratios. The SCJ,SCA model is unnecessary since the simpler model tracks well with the herd unit. The TSJ,CA model, while it trends well with observed population dynamics, does not match trends reported for earlier years when the population was estimated to be larger, and both license issuance and harvest success were higher. All three models have AICs that are low and well within one magnitude of power of each other. Thus, AIC has little bearing on model selection for this herd. The CJ,CA model is considered to be of good quality in representing population trends and estimates for this herd and based on established model criteria.

Management Summary

Traditional season dates in this herd run for two weeks from October $15^{\text {th }}$ through October $31^{\text {st }}$. The 2014 season follows the same season dates with 150 Type 1 licenses. Type 6 licenses were formerly valid in the southeastern corner of the hunt area, and were intended to address damage issues on agricultural fields. These licenses will be eliminated in 2014, as there are currently no complaints of damage from mule deer. Type 6 licenses may be reinstated in future years should the population grow and damage to agriculture in this area become a concern once again.

If we attain the projected harvest of 140 mule deer with fawn ratios similar to the past 5 years, this herd will remain stable. The predicted 2014 postseason population size of the North Natrona Mule Deer Herd is approximately 4,200 animals.

FIGURES

Mule Deer - North Natrona Hunt Area 34
Casper Region Revised 4/88

2013 - JCR Evaluation Form

SPECIES: White tailed Deer		PERIOD: 6/1/2013-5/31/2014
HERD: WD706-BLACK HILLS		
HUNT AREAS: 1-6		PREPARED BY: JOE SANDRINI
2008-2012 Average	$\underline{2013}$	2014 Proposed
Population: 47,077	48,946	58,800
Harvest: 4,764	3,482	3,735
Hunters: 8,299	6,110	6,550
Hunter Success: 57\%	57\%	57\%
Active Licenses: 8,699	6,456	6,800
Active License Percent: 55\%	54\%	55\%
Recreation Days: 34,637	25,404	27,250
Days Per Animal: 7.3	7.3	7.3
Males per 100 Females 26	24	
Juveniles per 100 Females 67	63	
Population Objective:		40,000
Management Strategy:		Recreational
Percent population is above (+) or below (-) objective:		22\%
Number of years population has been + or - objective in rece	nd:	2
Model Date:		02/20/2013
Proposed harvest rates (percent of pre-season estimate for each sex/age group):		
	JCR Year	Proposed
Females ≥ 1 year old:	3.5\%	3.8\%
Males ≥ 1 year old:	26.5\%	20.6\%
Juveniles (<1 year old):	0.9\%	0.9\%
Total:	7.4\%	7.8\%
Proposed change in post-season population:	+ 19.4\%	+ 22.7\%

Population Size - Postseason

```
\(\square\) WD706-POPULATION - WD706 - OBJECTIVE
```


Harvest

Number of Hunters

Harvest Success
\square WD706 - Hunter Success \% WD706 - Active License Success

Active Licenses

Days Per Animal Harvested
\square WD706 - Days

Preseason Animals per 100 Females
WD706-Males
WD706 - Juveniles

2008-2013 Preseason Classification Summary
for White tailed Deer Herd WD706 - BLACK HILLS

		MALES				FEMALES		JUVENILES		Tot Cls	$\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$	Males to 100 Females				Young to		
Year	Pre Pop	YIg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{aligned} & 100 \\ & \text { Fem } \end{aligned}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	72,187	127	222	349	13\%	1,381	53\%	871	33\%	2,601	1,247	9	16	25	± 0	63	± 0	50
2009	59,908	131	224	355	17\%	1,079	51\%	672	32\%	2,106	1,260	12	21	33	± 0	62	± 0	47
2010	49,047	93	232	325	12\%	1,407	51\%	1,016	37\%	2,748	1,536	7	16	23	± 0	72	± 0	59
2011	36,554	48	149	197	12\%	856	53\%	559	35\%	1,612	1,278	6	17	23	± 0	65	± 0	53
2012	43,891	93	143	236	13\%	919	50\%	675	37\%	1,830	1,590	10	16	26	± 0	73	± 0	58
2013	52,709	163	153	316	13\%	1,303	53\%	827	34\%	2,446	1,232	13	12	24	± 0	63	± 0	51

2014 HUNTING SEASONS
BLACK HILLS WHITE-TAILED DEER HERD (WD706)

Hunt Area	Type	Dates Opens	f Seasons Closes	Quota	License	Limitations
1		Nov. 1	Nov. 21		General	Antlered deer off private land; any deer on private land
1, 2, 3	8	Nov. 1	Nov. 21	1200	Limited quota	Doe or fawn white-tailed deer valid on private land
2	6	Nov. 1	Nov. 21	50	Limited quota	Doe or fawn valid on private land
2		Nov. 1	Nov. 21		General	Antlered deer off private land; any deer on private land
3		Nov. 1	Nov. 21		General	Antlered deer off private land; any deer on private land
4		Nov. 1	Nov. 20		General	Antlered deer off private land; any deer on private land except the lands of the State of Wyoming's Ranch A property shall be closed
4	6	Nov. 1	Nov. 20	150	Limited quota	Doe or fawn valid on private land
5		Nov. 1	Nov. 20		General	Antlered deer off private land; any deer on private land
5	6	Nov. 1	Nov. 20	25	Limited quota	Doe or fawn
6		Nov. 1	Nov. 20		General	Antlered deer off private land; any deer on private land
6, 9	6	Nov. 1	Nov. 20	10	Limited quota	Doe or fawn valid east of U.S. Highway 85

Region A Nonresident Quota: 2,750

SUMMARY OF CHANGES IN LICENSE NUMBER

Hunt Area	License Type	Quota change from 2013
2	6	+25
1,2	8	+400
Herd	$\mathbf{6}$	+25
Unit	$\mathbf{8}$	+400
Totals	Region \mathbf{A}	None

Management Evaluation

Current Management Objective: 40,000
Management Strategy: Recreational
2013 Postseason Population Estimate: ~ 47,900
2014 Proposed Postseason Population Estimate: ~ 58,800
Herd Unit Issues: The management objective of the Black Hills white-tailed deer herd unit is an estimated post-season population of 40,000 deer. This herd is managed under the recreational management strategy. The population objective and management strategy were set thirty years ago. It is apparent this objective is not commensurate with current population estimates relative to landowner and hunter desires. Thus, the management objective and strategy are scheduled for review during 2015. This will allow for several years of spreadsheet modeling before a proposed revision is taken to the public.

Over the years, modeling this population has been extremely difficult and frustrating. This is due to substantial interstate movement of deer, fluctuations in observed fawn:doe ratios, regular outbreaks of epizootic hemorrhagic disease (EHDV), increased predation in recent years, a high level of vehicle-deer collisions, the apparent low productivity of this herd compared to other white-tailed deer herds, severe winter and spring weather events, and low and irregular visibility of bucks during classifications. Consequently, the population model is thought to be of low quality and estimates produced by the model should be viewed cautiously. Because of this, and the fact that much of the herd unit is comprised of private property, management of this herd has been based heavily on perceptions of deer numbers relative to landowner tolerance.

The Black Hills White-Tailed Deer Herd unit is primarily located within Crook and Weston Counties in northeastern Wyoming and encompasses about $3,140 \mathrm{mi}^{2}$ of occupied habitat. Seasonal range maps for this herd were updated in 2004, and currently $335 \mathrm{mi}^{2}$ are delineated as crucial winter range. Approximately 79% of the land in this herd unit is privately owned. The largest blocks of accessible public land are found on the Black Hills National Forest in Hunt Areas (HA) 2 and 4, Thunder Basin National Grasslands in HA 6, and BLM lands in HA 1. Due to the late timing of deer hunting season in the Black Hills relative to other deer hunt areas in Wyoming, and the potential to harvest a whitetail on public land, this herd unit is extremely popular with resident hunters. Its proximity to the upper Midwestern United States and availability of sympatric mule deer hunted concurrently also make it very popular with nonresidents. Access fees for hunting are very common on private land, and many holdings have been leased to outfitters. Consequently, accessible public lands are subject to very heavy hunting pressure. Due to limited access for hunters on private land, keeping the growth of this herd in check is difficult when habitat and weather conditions are favorable.

Whitetails are the most numerous deer species in HA's 2 and 4, whereas more equal proportions or greater numbers of mule deer occupy HA's $1,3,5$, and 6 depending upon habitat type. A high proportion of white-tailed deer in the herd unit reside on private land. This results in their management being strongly influenced by landowner tolerance. Field personnel report whitetailed deer numbers are now generally below local tolerance, and most landowners and the hunting public desire to see more deer.

Dominant land uses in the herd unit include agricultural grazing and forage crop production. Most forested lands are actively managed for timber production and harvest. There is some
extraction of minerals, primarily bentonite and oil. The majority of white-tailed deer are found in the eastern two-thirds of this herd unit and along the Belle Fourche River drainage where habitat is favorable.

WeAther: Drought conditions, which were generally persistent throughout the Black Hills between 2000 and 2006, began to moderate some in 2007. Between 2007 and 2011, annual temperatures were generally near, or below, the previous 30 -year average and annual precipitation each year at, or above, that average (http://www.ncdc.noaa.gov/cag/time-series/us). Notably, 2010 was colder and wetter than both the 30-year and 100-year averages; and the winter of 2010-11 severe. Since the late 1890's, only five other winters were as cold and snowy as that of 2010-11. Overall, the predominant weather pattern between 2007 and 2011 was characterized by generally cool summers, more persistent snow cover in late fall and winter, and above normal spring moisture.

Drought returned to the Black Hills in 2012, with above normal summer temperatures and little rainfall during the growing season. Forage production that year was very poor, and the dry conditions led to several large wildfires in the southern half of the herd unit. These warm and dry conditions that beset the area in April of 2012 continued through the 2012-13 winter (http://www.ncdc.noaa.gov/cag/time-series/us). April of 2013 finally saw a break in this pattern when temperatures dropped well below normal for the entire month and good precipitation was again received. Through the remainder of the growing season, temperatures were slightly above average and precipitation well above normal. This resulted in excellent forage growth. In early October, 2013 winter storm Atlas blanketed the Black Hills with anywhere from about a foot of wet heavy snow near Newcastle, to three feet on the Bearlodge, and over five feet near Cement Ridge. This single storm event significantly hampered access for hunters on the BHNF throughout the hunting season. No large scale die-offs of white-tailed deer were witnessed from this storm, but some white-tailed deer mortalities on the National Forest south of I-90 were discovered. This storm also displaced a large number of white-tailed deer from higher elevations on the BHNF to lower elevation private lands.

Based on weather and habitat conditions over the past five years, it is likely white-tailed deer entered the winter in fair condition most years, except bio-year 2012. More normal winter temperatures and precipitation, punctuated by some severe winter and spring weather, have increased stress on white-tailed deer compared to the previous decade, as did the drought of 2012. This recent weather pattern resulted in fluctuation in observed fawn:doe ratios and some inconsistent, annual recruitment of fawns in to the adult population.

Habitat: Ponderosa pine (Pinus ponderosa) is the dominant overstory species on forested lands. Quaking aspen (Populus tremuloides), paper birch (Betula papyrifera), and bur oak (Quercus macrocarpa) stands are also present. Many areas dominated by deciduous trees are in late successional stages. Important shrubs include Saskatoon serviceberry (Amelanchier alnifolia), Oregon grape (Berberis repens), common chokecherry (Prunus virginiana), and spiraea (Spirea betulifolia). Non-timbered lands in this portion of the herd unit are used to produce agricultural crops such as winter wheat (Triticum aestivum), alfalfa hay (Medicago sativa), or mixed-grass hay. White-tailed deer in the western one-third of the herd unit are limited mainly to riparian habitats and associated agricultural ground. Outside of these riparian
corridors habitat in this portion of the herd unit is dominated by sagebrush steppe and grasslands with scattered ponderosa pine covered hills.

Winter forage production and utilization has been measured along two bur oak monitoring transects on the Black Hills National Forest (BHNF). These transects reveal very consistent, annual mean leader growth between 2003 and 2009 (no production data have been collected since). Annual leader growth averaged about two inches, with a standard deviation of less than one-half of an inch. The lowest production occurred between 2003 and 2005 and the greatest in 2009. It appears bur oak may invest extra water resources in either leader growth or mast production. This may be a function of timing of precipitation events, and complicates year to year comparisons of production data along with applying these data to deer management recommendations. Utilization of bur oak leaders available to deer measured between 2003 and 2011 averaged 59% (std. dev. 9\%). This level of use was considered excessive, since it regularly exceeded 50%, and suggests wintering white-tailed deer numbers in these areas may lead to excessive herbivory when this population is at objective.

Field Data: Preseason age and sex classifications are conducted in this herd unit the second half of October along standardized routes. Most of these routes have been used for over 40 years. In 2013, classifications were not conducted along these routes due to impossible travel conditions created by winter storm Atlas. Instead, ground based classifications were conducted in areas personnel could access to meet required sample sizes.

During the past three decades, fawn production and survival (based upon preseason classification counts) has been well below most white-tailed deer herds, and at times fluctuated dramatically. The underlying cause is thought to be related to over-winter nutritional condition of does (pers. Comm. SDGF\&P). Over the past decade, observed fawn:doe ratios have improved, likely a result of vegetative responses to fire. Since 2003, observed preseason fawn:doe ratios fluctuated between 56:100 and 73:100 $\left(\operatorname{mean}_{(03-13)}=64.9\right.$; std $\left.\operatorname{dev}=4.9\right)$, but exhibited a general trend upwards, improving about 10%. On the other hand, observed preseason buck:doe ratios, while also fluctuating, have declined about $12 \%\left(\operatorname{mean}_{(03-13)}=26.7\right.$; std dev $\left.=3.6\right)$. This is thought to be a result of increased non-hunting mortality, since hunting seasons the past several years have become more conservative. For example, 2010-11 over-winter mortality was likely significant considering the observed 2010 preseason fawn;doe ratio (72:100) and the 2011 observed yearling buck:doe ratio (6:100). Overall, this herd’s preseason buck:doe ratios are generally at the lower end of the Department's recreational management criteria. It should be noted, however, that classifications are made outside the rut and because whitetails are secretive, we have always modeled this herd's preseason buck:doe ratio about 30% above observed values. This has been necessary to create functional models, and seems reasonable given the classification protocol.

Harvest Data: In the Black Hills, deer management entails regulating both mule deer and whitetail harvest under a single season structure, across a variety of habitats and habitat conditions, with serious deference given to landowner desires. An analysis of harvest information suggests hunter numbers has the greatest impact on buck harvest. Therefore, buck harvest has been regulated by altering non-resident hunter numbers via changes in the Region A quota, while resident buck hunter participation can only be limited by shortening the season notably by inclusion or removal of the Thanksgiving Day weekend and the days following in November, due to the large influx of hunters during this time period when buck deer are highly vulnerable to harvest. With more conservative hunting season structures in place since 2010,
harvest has dropped. At the same time, hunter success generally declined and effort increased until 2013, when this trend began to reverse itself.

Hunting seasons the past four years reduced harvest of whitetail bucks an average of 30% from that experienced during the traditional November season the preceding four years. Comparing these same time periods, resident harvest of white-tailed bucks dropped 19\%, while non-resident harvest of white-tailed bucks dropped 40\%. During this time period, harvest of mule deer bucks declined more precipitously (see MD751). Despite these trends, observed preseason, whitetail buck:doe ratios have been fairly stable $\left(\operatorname{mean}_{(2010-2013)}=24.0\right.$, $\left.\operatorname{std} \operatorname{dev}=1.4\right)$ and deer hunter satisfaction essentially remained unchanged. About 68% of hunters of both deer species have reported they were either satisfied or very satisfied with their Black Hills deer hunt each of the past three years, while only around 15% reported they were either dissatisfied or very dissatisfied - regardless of species. With the slight increase in deer hunter success rates in 2013, hunter satisfaction actually climbed a few percentage points for both species.

Population: Population modeling of this herd has been difficult and fraught with problems. The population violates the closed population assumption due to significant interstate movement of deer between Wyoming, Montana, and South Dakota. In addition, fluctuations in observed fawn:doe ratios, outbreaks of EHDV, increased predation, a high level of vehicle-deer collisions, the low productivity of this herd, occasional severe winter and spring weather events, and reduced visibility of bucks during classifications make use of classification data tenuous for constructing a population model. Of the three competing spreadsheet models, the Semi-Constant Juvenile / Semi-Constant Adult survival (SCJ SCA) model was selected to estimate the population. The Constant Juvenile / Constant Adult survival (CJ CA) model would not function with this herd's observed data despite repeated efforts and alterations. The Time Sensitive Juvenile / Constant Adult survival model (TSJ CA) was also rejected even though it exhibited the lowest AICc value and best fit. This was because it constrained juvenile survival rates to set limits 14 out of 22 years, and was not correlated well with trend data or harvest statistics. Alternatively, the SCJ SCA model was about 80\% correlated with preseason trend counts (19962012) and approximately 60\% correlated with trend counts between 2008 \& 2012 (Figure 1). Because this model was best correlated with trend count data, it was selected over the TSJ CA model despite a higher AICc value and poorer fit. Further, changes in the preseason population estimates produced by the SCJ SCA model are inversely correlated with changes in hunter effort, while the TSJ CA model exhibits a slight positive correlation. With regards to changes in hunter success, none of the models correlate well with harvest statistics, but the SCJ SCA model does the best job. Additionally, the SCJ SCA model estimates about 35% to 45% of bucks in the preseason population are being harvested most years (mean 37\%), and in a couple years 50% or more are taken, something that seems unlikely. On the other hand, the TSJ CA model exhibits about half as much variation in the estimated percentage of bucks harvested annually, but still yielding a mean value of 33%. Therefore, due to the variety of factors identified, we consider the chosen model to be of poor quality, but better than the competing models.

According to the selected spreadsheet model, this population grew 115\% between 2001 and 2007. The population then declined 57% to its nadir in 2011 (20% below objective), before rebounding nearly 50% through 2013. If population estimates produced by the spreadsheet model are close to accurate, then our current objective is likely well below landowner and hunter desires, as many landowners and hunters have noted deer numbers are still below the level they would like to see.

Figure 1. 2001-2012 white-tailed deer, estimated preseason population and trend count data, increased by a factor of $\mathbf{1 0}$.

Beginning in 2002, hunting seasons were structured to retard growth. Population growth was reversed in 2007, but this directional change was primarily due to increased non-hunting mortality rather than enhanced harvest. Changes in survival rates have been most ostensibly attributed to increased over-winter mortality caused by late spring blizzards in 2008 \& 2009, and an unusually severe winter in bio-year 2010. These weather events combined with epizootic hemorrhagic disease (EHDV) outbreaks each of the past six years to increase annual mortality in all sex and age classes of deer. Between 2007 and 2010, evidence also suggests the mountain lion population in the Black Hills reached historically high levels. As a result, elevated harvest, weather conditions, disease, and increased predation acted in concert to reduce this population substantially. In response, hunting seasons have been conservative since 2010, allowing this herd to increase the past three years.

MANAGEMENT Summary: Changes to the 2014 white-tailed deer hunting season in the Black Hills were designed to continue conservative harvest of bucks, but allow increased take of antlerless white-tailed deer. Changes included moving the closing date to November $21^{\text {st }}$ from November $22^{\text {nd }}$ in Hunt Areas 1, 2, and 3. This was done to maintain just three full weekends of deer hunting. Staying with the $22^{\text {nd }}$ closing date would have added an additional Saturday to the season when compared to the previous 3 years; and returning to a Thanksgiving Day closing date would have added another full week and additional weekend of hunting to the season beyond what has been in place the past four years. Whitetail deer buck numbers seem to be improving, and based upon classification data and population estimates there should be a good cohort of 1 and 2 year old bucks available for hunters in 2014, but significantly lower numbers of 3 \& 4 year old bucks than in recent years. As such, it seems prudent to limit buck harvest until we have an increase in the number of older bucks and can spread harvest pressure out more amongst age classes, something most hunters desire. Continuing with a Region A license quota identical to last year is also intended to limit harvest of bucks. In order to help temper herd growth and allow landowners to be proactive in curbing increases in whitetail numbers, issuance of type 8 doe/fawn white-tailed deer licenses valid on private land was increased 50% with these tags also being made valid in HA 3 in addition to HA's $1 \& 2$; and the relatively low number of type 6 doe/fawn licenses valid on private land for either deer species doubled.

The 2014 hunting season is expected to yield an estimated 2014 postseason population of 58,800 white-tailed deer, which represents a 23% increase in the current post-season population and assumes losses to EHDV will be less than have been experienced in recent years. Such a change in the population would result in a herd 47% above objective, but hopefully get us close to a number of deer most hunters and landowners would like to see.

2013 - JCR Evaluation Form

Population Size - Postseason

Harvest

Number of Hunters

Harvest Success
\square WD707 - Hunter Success \% WD707 - Active License Success

Active Licenses

\square WD707 - Days

Postseason Animals per 100 Females
\square WD707 - Males \square WD707 - Juveniles

2008-2013 Postseason Classification Summary for White tailed Deer Herd WD707 - CENTRAL																		
		MALES				females		JUVENILES		Tot Cls	$\begin{aligned} & \mathrm{Cls} \\ & \mathrm{Obj} \end{aligned}$	Males to 100 Females				Young to		
Year	Post Pop	Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{gathered} 100 \\ \text { Fem } \end{gathered}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	0	54	91	145	18\%	386	48\%	266	33\%	797	0	14	24	38	± 0	69	± 0	50
2009	0	49	108	157	19\%	430	51\%	261	31\%	848	0	11	25	37	± 0	61	± 0	44
2010	0	60	87	147	19\%	372	48\%	253	33\%	772	0	16	23	40	± 0	68	± 0	49
2011	0	45	81	126	14\%	467	53\%	292	33\%	885	0	10	17	27	± 0	63	± 0	49
2012	0	54	76	130	18\%	381	53\%	212	29\%	723	0	14	20	34	± 0	56	± 0	41
2013	0	19	61	80	21\%	188	48\%	121	31\%	389	0	10	32	43	± 0	64	± 0	45

2014 HUNTING SEASONS

CENTRAL WHITE-TAILED DEER (WD707)

Hunt Area	Type	Date of Seasons		Quota	Limitations
		Opens	Closes		
$\begin{gathered} 10,11,12 \\ 13,14 \end{gathered}$	3	Oct. 1	Nov. 30	400	Limited quota licenses; any white-tailed deer
	8	Oct. 1	Nov. 30	300	Limited quota licenses; doe or fawn white-tailed deer
		Oct. 16	Nov. 30		General license; any white-tailed deer
22	3	Oct. 1	Nov. 30	50	Limited quota licenses; any white-tailed deer
	8	Oct. 1	Nov. 30	25	Limited quota licenses; doe or fawn white-tailed deer
34	3	Oct. 15	Nov. 30	35	Limited quota licenses; any white-tailed deer
	8	Oct. 15	Nov. 30	50	Limited quota licenses; doe or fawn white-tailed deer
$\begin{aligned} & 65,66, \\ & 88,89 \end{aligned}$	3	Oct. 15	Nov. 30	300	Limited quota licenses; any white-tailed deer
	8	Oct. 15	Nov. 30	400	Limited quota licenses; doe or fawn white-tailed deer
Archery					Refer to license type and limitations in Section 2

Note: The above season limitations are restricted to only those lines in the Chapter 6 Regulation that directly affect white-tailed deer hunting. Additional general and limited quota seasons occur in hunt areas $7-14,22,34,65-67,88$, and 89 but are not captured here.

Hunt Area	Type	Quota Change
$10,11,12$	3	-100
	8	-200
22	3	-50
	8	-75
34	3	-15
	8	-50
$65,66,88$,	3	-200
89	8	-300
WD707 Total	$\mathbf{3}$	$\mathbf{- 3 6 5}$
(excluding Type 6 \& 7 licenses)	$\mathbf{8}$	$\mathbf{- 6 2 5}$

Management Evaluation

Current Management Objective: ≥ 20 bucks: 100 does postseason
Management Strategy: Recreational
2013 Postseason Population Estimate: NA
2014 Proposed Postseason Population Estimate: NA

The Central White-tailed Deer Herd Unit has a postseason management objective of ≥ 20 bucks per 100 does. No population model exists for this herd unit, as this is not a well-defined or closed population. Managers are unable to obtain adequate classifications over this large herd unit due to poor sightability of white-tailed deer in cottonwood riparian habitats. Access to perform ground surveys is inconsistent and highly variable from year to year as most white-tailed deer inhabit private lands.

Herd Unit Issues

White-tailed deer densities in this herd are highest along major cottonwood riparian communities of the Cheyenne River and North Platte River drainages and on irrigated hay fields in the La Prele Creek, La Bonte Creek, and Casper Creek drainages. Most white-tailed deer habitats in this herd unit are on private lands. Landowners typically have a low tolerance for white-tailed deer, and access to hunt is generally good. Periodic disease outbreaks (i.e. hemorrhagic diseases, adenovirus, Asian louse, Chronic Wasting Disease) are known to occur within this herd, and can contribute to population declines in localized areas when environmental conditions are suitable. Female harvest in this herd is typically insufficient to curtail population growth as many Type 8 licenses remain unsold. Epizootic Hemorrhagic Disease (EHD) often regulates this population given the lack of female harvest.

Weather

The winter of 2010-2011 was severe across most of the herd unit, and likely increased mortality of white-tailed deer across all age classes. Conditions were warmer and drier in 2011, and whitetailed deer were more confined to riparian areas as forage conditions in drier habitats was poor. The summer of 2012 was the driest on record since 1904 in much of Wyoming, and the winter of 2012 continued the trend with very low snow accumulation and snow pack. Severe drought conditions in 2012 confined not only white-tailed deer but also other big game species to riparian areas. Thus, competition for available forage increased significantly along most drainages. Postseason fawn ratios dropped markedly as a result in 2012. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer and fall of 2013 in much of the herd unit, and post-season fawn ratios rebounded as a result. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30year average. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

This herd unit has no established habitat transects that measure growth and/or utilization on shrub species that are preferred browse of white-tailed deer. However, browse quality and availability appeared to increase along riparian corridors as moisture improved from 2012 to 2013. Anecdotal observations from field personnel noted average moisture conditions resulting in average to good upland shrub and herbaceous forb conditions. Many landowners also reported improved conditions for irrigation of hay fields during the 2013 growing season.

Field Data

Fawn ratios are typically good for this herd and range in the $60-70$ s per 100 does. 2013 was an average year with observed fawn ratios of 64 per 100 does. Still, white-tailed deer appear to be at a low point in their population within this herd unit due to disease outbreak, harsh winters in 2010 and 2011, and the severe drought of 2012. This herd unit will require several more years of improved fawn production and survival before managers can expect any significant increase in population size.

Buck ratios for the Central White-tailed Deer Herd historically average in the mid 30s per 100 does, but occasionally swell into the 40s or drop into the 20s. In 2013 the observed buck ratio was 43 per 100 does. Observed ratios may vary from year to year due to differing levels of effort or success in sampling white-tailed deer during post-season classification surveys. Buck ratios
vary widely across the large variety of habitats in this herd unit as well. Additionally, whitetailed deer can be difficult to classify on private lands and in riparian cover, particularly bucks that may be solitary and elusive. Still, observed buck ratios have always met management objectives for this herd by remaining at or above 20 bucks per 100 does.

Reports of dead white-tailed deer were prevalent along the North Platte River and its drainages west of the city of Casper during the late summer of 2013. Lab analysis confirmed the fatalities were the result of epizootic hemorrhagic disease (EHD). Suspected EHD outbreaks also occurred throught the Cheyenne River drainages in the eastern portion of the herd unit. While cases were not as wide-spread as those reported in the central portions of the herd unit in 2012, presence of EHD increased overall mortality in the herd during the late summer of 2013.

Harvest Data

License success in this herd unit is typically in the $40-50^{\text {th }}$ percentile, and was 41 percent in 2013. License issuance varies greatly between the many hunt areas contained within the herd unit. Hunters can typically take white-tailed deer on general licenses and also purchase additional limited quota licenses valid for any white-tailed deer or doe/fawn white-tailed deer. Issuance of limited quota licenses is managed from year to year depending on perceived numbers of white-tailed deer on private lands. Potential damage issues and willingness of landowners to provide access are also factors influencing license issuance.

Access to white-tailed deer hunting opportunity generally increased and peaked in 2011 with a total of over 3,100 hunters. Since then license issuance has been gradually reduced, as the population - and hunting access - have decreased. From 2011-2013, harvest success has declined 24%, while hunter effort has increased 52%. Hunter comments in 2013 also reflect reduced access resulting from reduced numbers of white-tailed deer in the herd unit. Many phone calls were received by Casper Region personnel from hunters seeking access for whitetailed deer hunting, as landowners with fewer deer turned hunters away. Additional comments were received via harvest surveys from hunters expressing their dissatisfaction as opportunity to hunt white-tails on private lands was low. Observations from field personnel, harvest statistics, and hunter comments all indicate that this herd unit is at a population low. Concequently, license issuance will be reduced within this herd unit for 2014.

Population

Currently there is no population model that accurately represents this herd. Management is instead based on postseason buck ratios with a goal of maintaining ≥ 20 bucks per 100 does.

Management Summary

Traditional season dates in this herd vary from one hunt area to the next. Generally, white-tailed deer seasons run concurrently with October mule deer seasons, and are extended into November to maximize hunter opportunity and harvest. The 2014 season includes 775 Type 3 licenses, 775 Type 8 licenses, and additional opportunities to harvest white-tailed deer on General, Type 1, and Type 6 licenses. Type 3 and Type 8 licenses were reduced by 375 and 625 respectively, to address a decrease in access to white-tailed deer throughout the herd unit. Goals for 2014 are to maintain buck ratios, improve hunter opportunity, and address agricultural damage on private lands.

If we attain the projected harvest of 725 with fawn production/survival similar to the five-year average, buck ratios should be maintained above 20 per 100 does.

Central White-tailed Deer Herd Unit (WD707)
 Revised May 12, 2010
 Hunt Areas 7-15, 21, 22, 34, 65-67, 88, 89

2013 - JCR Evaluation Form

SPECIES: Elk		PERIOD: 6/1/2013-5/31/2014	
HERD: EL740 - BLACK HILLS			
HUNT AREAS: 1, 116-117		PREPARED BY: JOE SANDRINI	
	$\underline{\text { 2008 - 2012 Average }}$	$\underline{\mathbf{2 0 1 3}}$	2014 Proposed
Hunter Satisfaction Percent	63%	52%	60%
Landowner Satisfaction Percent	51%	50%	60%
Harvest:	521	526	650
Hunters:	1,073	1,812	1,850
Hunter Success:	49%	29%	35%
Active Licenses:	1,115	28%	1,925
Active License Percentage:	47%	28%	34%
Recreation Days:	11,938	17,880	14,950
Days Per Animal:	22.9	34.0	23
Males per 100 Females:	27	32	
Juveniles per 100 Females	29	41	60%
Satisifaction Based Objective			Private
Management Strategy:		-9%	
Percent population is above (+) or (-) objective:		2	
Number of years population has been + or - objective in recent trend:			

Harvest

Number of Hunters

Harvest Success
\square EL740 - Hunter Success \% $\square \begin{aligned} & \text { EL740 - Active License Success } \\ & \%\end{aligned}$

Active Licenses

\square EL740 - Active Licenses

Days per Animal Harvested
\square EL740 - Days

Postseason Animals per 100 Females
\square EL740 - Males \square EL740 - Juveniles

2014 HUNTING SEASONS

BLACK HILLS ELK HERD (EL740)

Hunt Area	Type	Season Dates		Quota	Limitations
		Opens	Closes		
1	1	Oct. 15	Nov. 30	100	Limited quota licenses; any elk
	4	Oct. 15	Nov. 30	75	Limited quota licenses; antlerless elk
116		Oct. 15	Nov. 10		General license; any elk
		Nov. 11	Nov. 30		General license; antlerless elk
	6	Oct. 15	Jan. 31	250	Limited quota licenses; cow or calf
	8	Aug. 15	Oct. 14	50	Limited quota licenses; cow or calf valid off national forest
117	1	Oct. 15	Nov. 30	275	Limited quota licenses; any elk
		Dec. 1	Jan. 31		Unused Area 117 Type 1 licenses valid for antlerless elk
	4	Oct. 15	Jan. 31	250	Limited quota licenses; antlerless elk
	6	Oct. 15	Jan. 31	250	Limited quota licenses; cow or calf
	8	Aug. 15	Oct. 14	50	Limited quota licenses; cow or calf valid off national forest
Archery		Sep. 1	Sep. 30		Refer to license type and limitations in Section 2

SUMMARY OF CHANGES IN LICENSE NUMBER

Hunt Area	Type	Change from 2013
Herd Unit	1	none
	4	none
	6	none
	8	none

Management Evaluation

Current Hunter/Landowner Satisfaction Management Objective: 60\% landowner \& hunter Management Strategy: Private Land
Secondary Management Strategy: Age distribution of harvested bulls
2013 Hunter Satisfaction Estimate: 52\%
2013 Landowner Satisfaction Estimate ${ }^{1}$: 50\%

Most Recent 3-year Running Average Hunter Satisfaction Estimate: 59\% Most Recent 3-year Running Average Landowner Satisfaction Estimate ${ }^{2}$: 50\%

2013 Postseason Population Estimate: None - Field Estimate ~ 2,500
 2014 Proposed Postseason Population Estimate: None - Field Estimate ~ 2,500

Herd Unit Issues: The Black Hills Elk Herd Unit has a management objective for 60\% or greater landowner and hunter satisfaction. The management strategy is private land, with a secondary management objective seeking an annual bull harvest (based upon tooth age data) comprised of 20% that are $1 / 2$ to 2 years old; 60% that are 3 to 5 years old; and 20% that are 6 years old, or older ($\pm 5 \%$ in all categories). These management objectives and strategies were adopted in 2013.

We can neither construct a population model, nor generate a population estimate for this herd as the Department has never been able to collect meaningful classification data. Additionally, radio collar data show substantial numbers of elk regularly cross the Wyoming/South Dakota Stateline violating the closed population assumption of population models. Consequently, no attempts have been made to model this population since 1996. Instead, this herd was managed in an ad hoc fashion over the past decade and an half to provide ample recreational opportunity and address depredation complaints. In many locations across the herd unit, management of elk numbers has been hampered due to constrained access to private land for elk hunting. Consequently, the above mentioned non-numerical management objectives were adopted in 2013. Field personnel anecdotally estimate Wyoming's Black Hills elk population to have numbered about 2,500 at the close of the 2013 hunting season.

The Black Hills Elk Herd Unit is comprised of Hunt Areas (HA's) 1, 116, \& 117. It is located in the northeast corner of Wyoming and encompasses approximately $3,270 \mathrm{mi}^{2}$, of which $1,920 \mathrm{mi}^{2}$ are considered occupied habitat. ${ }^{3}$ Elk are not ubiquitous across occupied habitat either in time or space. Rather, they tend to move about depending upon range conditions, snow depth and human activity, with some areas seeing regular elk use and other areas very infrequent use. 73\% of the occupied habitat is private land, with the single largest block of public land being found on the Black Hills National Forest (BHNF), which comprises 14% of the occupied habitat. HA 1 is

[^3]95\% public land, and represents the largest contiguous block of public land extensively inhabited by elk. Elk do occur on other portions of the Black Hills National Forest and dispersed sections of State and other federally owned lands. However, elk use, and consequently harvest, in those areas are not consistent.

Statewide, at the herd unit level, elk hunter success is highly correlated with reported hunter satisfaction 84% in 2013 (and over 90% in previous years). In 2013, HA 116 moved from limited quota license hunting to a liberal general license season combined with a significant number of reduced priced cow/calf licenses, which did not sell out in the draw. This resulted in a large number of license holders hunting only accessible public lands, where few elk reside or were harvested. Consequently, hunter success on general licenses was only 17%, with about 30% of cow/calf hunters being successful and total active license success being 21%. These poor success rates were reflected in low hunter satisfaction in HA 116. Only 47% of the HA 116 elk hunters reported being satisfied or very satisfied with their hunt. These figures biased the herd unit hunter satisfaction numbers low as well, since 55% of the hunters at the herd unit level were sampled from HA 116. Overall hunter satisfaction in HA 1 and HA 117 was 63% and 56%, respectively. In these two hunt areas, hunter satisfaction was within a couple percentage points of that reported in 2012, but these values were still below the 64% reported for both areas in 2011, when hunter success was the highest in recent years.

Landowner satisfaction with elk numbers was first measured in the spring of 2013, as we prepared to move the herd unit objective away from a numerical value. At that time, 167 Black Hills landowners who have elk on their property, at least occasionally, were mailed a short survey with a prepaid return envelope to gauge their satisfaction with elk numbers and support for moving to a non-numerical objective. A total of 71 landowners responded, and 60% noted they were satisfied, very satisfied, or neutral with respect to elk numbers in the Black Hills. However, Department criteria for satisfaction do not consider "neutral" respondents, which is unfortunate because these individuals are not expressing specific dissatisfaction with elk numbers. Therefore, a value of 51% was recorded as the 2012 bio-year landowner satisfaction measure. During the first two months of 2014, a total of 30 large landowners who regularly harbor elk, allow some level of hunting and often experience conflict with elk were contacted individually by Department personnel. In all, 48\% of these landowners reported being either satisfied or very satisfied with elk numbers. In this survey, respondents were given the choice of "no opinion" instead of "neutral." This may explain some of the change in landowner satisfaction between 2012 \& 2013, as does the selection of landowners sampled in 2013 versus 2014. The widespread mail sample of 2013 captured many non-traditional landowners and folks who experience little in the way of elk damage. It is difficult to broadly quantify satisfaction amongst landowners because many Black Hills landowners are small by Wyoming standards and/or not dependent on agriculture for profit. On the other hand, there are a few large traditional ranching landowners significantly impacted by elk, and frustrated with the damage they cause. A greater proportion of those types of landowners were sampled in 2014. This landowner satisfaction survey will be modified appropriately in the future.

The herd unit boundary has been revised several times over the past 30 years as hunt area boundaries were altered. The most recent change came in 2013, when HA 116 was expanded in order for the herd unit to encapsulate the Wyoming Black Hills ecosystem, and allow general
license hunting in this same hunt area. Future changes in hunt area boundaries are not anticipated. The herd's seasonal range map was updated in February, 2014 using field observations, contacts with landowners, and the knowledge of local Game \& Fish personnel to delineate ranges. Delineation of crucial winter and winter ranges were not made at this time, due to the lack of data required to define these types of seasonal ranges.

Weather: Drought conditions, which were generally persistent throughout the Black Hills between 2000 and 2006, began to moderate some in 2007. Between 2007 and 2011, annual temperatures were near, or below, the previous 30 -year average and annual precipitation each year at, or above, that average (http://www.ncdc.noaa.gov/cag/time-series/us). Notably, 2010 was colder and wetter than both the 30-year and 100-year averages; and the winter of 2010-11 was severe. Since the late 1890's, only five other winters were as cold and snowy as that of 2010-11. Overall, the predominant weather pattern between 2007 and 2011 was characterized by generally cool summers, more persistent snow cover in late fall and winter, and above normal spring moisture. This combination of average winter weather and fair forage conditions seemed to have been neither detrimental, nor beneficial for Black Hills elk; but did result in some localized depredation complaints in late December and early January each year.

Drought returned to the Black Hills in 2012, with well above normal summer temperatures and little rainfall during the growing season. Forage production that year was very poor, and the dry conditions led to several large wildfires in the southern half of the herd unit. These warm and dry conditions beset the area in April of 2012, and continued through the 2012-13 winter (http://www.ncdc.noaa.gov/cag/time-series/us). April of 2013 finally saw a break in this pattern when temperatures dropped well below normal for the entire month and good precipitation was again received. Through the remainder of the growing season, temperatures were slightly above average and precipitation well above normal. This resulted in excellent forage growth. In early October, 2013 winter storm Atlas blanketed the Black Hills with anywhere from about a foot of wet heavy snow near Newcastle, to over five feet near Cement Ridge. This single storm event significantly reduced the ability of hunters to access a large portion of HA 1 and limited access to elk on public land in many other places for most of the hunting season. No die-offs of elk were witnessed from this storm, but some deer mortalities on the National Forest south of I-90 were discovered.

Based on weather and habitat conditions over the past five years, it is likely elk have entered the winter in fair to good condition most years, except in 2012. More normal winter temperatures and precipitation, punctuated by some severe winter weather, have increased winter stress on elk compared to the previous decade, as did the drought of 2012. In summary, weather the past several years, while not highly favorable for elk, has not been significantly detrimental. However, these fluctuations in weather have exacerbated elk damage at times.

Habitat: The Black Hills is the western most extension of many eastern plant species. These species are often mixed with more typical western plants providing a large variety of habitats used by elk. Ponderosa pine (Pinus ponderosa) is the predominant overstory species. There are scattered patches of quaking aspen (Populus tremuloides), paper birch (Betula papyrifera), bur oak (Quercus macrocarpa), and mountain mahogany (Cercocarpus montanus). Many of these stands are in late successional stages. Important shrubs include Saskatoon serviceberry
(Amelanchier alnifolia), Oregon grape (Berberis repens), common chokecherry (Prunus virginiana), and wild spiraea (Spiraea betulifolia). Since 2000, wildfires in both Wyoming and South Dakota have burned well over 10% of the BHNF and significant areas of private land in this ecosystem. These fires have been beneficial for elk by creating early successional plant communities and increasing available forage.

Elk habitat quantity and quality are good, but security areas may be decreased or lacking in areas due to high road densities. High road densities, along with vast tracts of commercially thinned ponderosa pine stands, do not provide what is usually considered classic, good elk habitat. Despite the lack of cover in areas and numerous roads, the elk population expanded through most of the previous decade. Several factors have benefited this population. First, herbaceous forage is abundant, and wildfires have increased elk forage. Second, despite high road densities, much of the land inhabited by elk is privately owned. This private land experiences limited human activity, so roads there may not significantly impact elk. Many of these same private land areas provide elk refuge from hunting pressure during the fall. The USFS has also increased the number of road closures on the Black Hills National Forest over the past 10-years, and recently adopted a revised travel management plan, although enforcement of closures is lax.

Currently, there are no habitat evaluation or vegetation surveys located within this herd unit related directly to elk forage or cover. A single mountain mahogany, and two bur oak, production and utilization transects were established within the herd unit in 2003 to quantify habitat conditions related to deer management.

Field Data: Collection of classification data was suspended in this herd in 1996, and only occasionally are limited classification data garnered during other field activities. In December of 2013, 230 elk were classified in HA 117 yielding a calf:cow ratio of 41:100; a mature bull:cow ratio of 18:100 with a yearling bull:cow ratio 12:100 and total bull:cow ratio of 30:100. A similar sample in 2012 revealed an almost identical mature bull:cow ratio and a slightly reduced yearling bull:cow ratio, but a 30% lower calf:cow ratio. These recent post-season data are pretty similar to the other, limited and incidental classification data collected over the past decade, although observed bull:cow ratios have dropped.

While classification data are lacking, tooth age data have been collected from harvested elk since 1987. ${ }^{4}$ Tooth age data can estimate annual recruitment by considering the percentage of yearlings in the female segment of the harvest (Figure 1). Since 1987, this figure has averaged ${ }^{5}$ 16.4% (std. dev. 8.0%) suggesting 10 to 20 yearling bulls and 10 to 20 yearling cows are normally added per 100 adult cows into this population annually. However, recruitment of yearling elk has declined since 2000. Between 1987 and 1999, as this herd grew rapidly, older age classes of female elk were well distributed throughout the harvest and there was an increasing percentage of yearling cows represented in the harvest. However, this trend reversed itself beginning in 2000 (Figure 1). A Student's T-Test indicates yearling recruitment was significantly higher between 1987 and 1999 when there were an average of 20% yearlings in the

[^4]female harvest, versus an average of 11% after $2000(p=0.0002)^{6}$. Since 2000, with significantly increased license issuance and extended hunting seasons, there has been a general increase in the percentage of female elk over age 5 harvested and a decline in the percentage of young (≤ 2 years old) females taken, while the relative percentage of mid-aged cows has remained fairly stable (Figure 2). This trend, while less pronounced, has generally continued over the past 5years.

Of course there is greater hunter selectivity when it comes to take of bulls. Since 2000, tooth age data has revealed a slight decline in the relative percentages of both middle-aged (3-5 year old) and young (≤ 2 years old) males in the bull harvest, with a slight increase in the percentage of older bulls (6^{+}years old) harvested (Figure 3). However, since 2008, this trend has begun to shift, as a greater proportion of younger bulls (≤ 5 years old) have been harvested. Over the past 10 years, bull hunter success has remained unchanged in HA 117 (where the bulk of the tooth age data are returned) while antlerless hunter success has generally increased. Taken with the disparate increases in any elk versus antlerless elk license issuance here, it makes sense that we have impacted the antlerless segment of the herd more than the mature bull segment. This is evident in the shift towards harvesting older cows and could be elevating bull:cow ratios. If this population has stabilized, we may be forcing harvest pressure on to younger-aged bulls, and if these recent trends continue it could limit our ability to meet our secondary objective (Table 1).

Figure 1. Percentage of yearlings in the female segment of the elk harvest (1987-2013).

[^5]

Figure 2. Relative percentages of various age classes of female elk harvested (2000 - 2013).

Figure 3. Relative percentages of various age classes of male elk harvested (2000 - 2013).

Harvest: The low number of yearling females present in the harvest in recent years suggests reduced recruitment, as does the fact elk are not pioneering into unoccupied habitats as they once were. However, while adequate harvest may be achieved some years south of I-90, poor success by hunters pursuing female elk in HA 116 is likely allowing that portion of the herd to grow. This stems from a few landowners restricting access to the majority of elk during the hunting season. However, between 2008 and 2012 it was difficult to gauge total take and the potential rate of increase north of I-90 because a substantial portion the herd unit moved into general license HA 129. Due to harvest survey constraints, there was no way to determine how many elk were harvested in from that part of the herd unit formerly included in HA 129, which is now in general license HA 116. Consequently, over the years, the bulk of tooth age data have returned from HA 1 and 117, any decrease in recruitment should only be ascribed south of I-90.

Segment of Bull Harvest	Objective	2011	2012	2013
Bulls 0-2 yrs. old	20\%	17\%	28\%	33\%
3 yr . mean				26\%
Bulls 3-5 yrs. old	60\%	52\%	52\%	39\%
3 yr . mean				48\%
Bulls 6+ yrs. old	20\%	31\%	20\%	27\%
3 yr . mean				26\%

Table 1. Secondary management objective, relative distribution of ages of harvested bulls
Limited quota license issuance and harvest are positively correlated within this herd unit. Between 1992 and 2002, license issuance increased exponentially while harvest increased more linearly. Between 2002 and 2010 changes in harvest were not as disparate with changes in license issuance. But, over the past three years, license issuance again has substantially outpaced increases in harvest. Consequently, hunter success has dropped. Overall, active hunting licenses have increased about 250% since 1999, while harvest increased a bit more than 100% (Figure 4).

Access to private land for hunting remains limited and field personnel have great difficulty placing the increased number of hunters, many of whom make repeated phone calls to local game managers and landowners without securing a place to hunt.

Figure 4. Active hunting licenses \& elk harvest in the Black Hills Herd Unit (1999 - 2013). *Note, between 2008 and 2012 large portions of Hunt Areas 116 \& 117 were put into General License Hunt Area 129 and active license numbers not captured. In 2013 these areas were included in Hunt Area 116.

Given average yearling recruitment of 30 yearling elk per 100 cows (based upon 15% yearling cows in total cow elk harvest) and assuming a pre-season herd composition of 40 bulls per 100 cows and 47 calves per 100 cows (based on SDGF\&P data), the 2013 estimated harvest of 500 adult elk would have removed the annual recruitment of yearlings from a total population of about 3,115 elk. As such, and based upon anecdotal population estimates, the 2013 harvest should have about kept this herd at its current level, or reduced it slightly. However, several hundred elk (perhaps nearly 1,000 head) regularly cross the Stateline, and a significant number of these winter in South Dakota making it difficult to determine what effect harvest is having on our post-season population.

Population: Despite the lack of a population estimate, indications are elk numbers increased quite a bit over the past 30 years. The population appeared to increase rapidly during the 1990's and early part of the next decade when elk significantly expanded their distribution. Silvicultural practices and wildfires throughout the region have created habitat favorable for elk. Although habitat changes have favored elk in recent years, elk have not continued to pioneer into previously unoccupied areas. Harvest statistics and tooth age data also suggest population growth may have been curbed recently, at least south of Interstate Highway 90 (I-90). Given the high quality habitat in the region and limited access to hunt elk on private land, this population will likely continue to grow in areas where limited hunter take, due to access constraints, thwarts efforts to obtain adequate harvest.

Management Summary: Changes implemented during the 2013 Black Hills elk hunting season included expanding HA 116 to include all of the lands within Wyoming’s Black Hills ecosystem previously enrolled in HA 129 and hunting this area under a combination of general and type 6 and 8 cow/calf licenses. Also, because hunter success and satisfaction had dropped south of I-90, issuance of all license types in HA 1 and HA 117 were reduced as well. The proportion of active licenses relative to the total number of licenses issued also dropped in 2013 as did success rates in some areas where access to elk was hampered due to snow conditions. It is also important to note that while only 48% of the landowners surveyed in 2014 were satisfied with elk numbers, a whopping 82% did not want a change in license numbers and several expressed dissatisfaction with the long hunting season. This statistic bears out the fact that while many landowners complain about elk numbers, few are willing to allow hunting at the levels needed to significantly reduce this population. As a result, no changes to the hunting season structure are being implemented in 2014. This strategy should allow hunter success to increase, except perhaps for general license hunters in HA 116 where the numbers of elk on accessible public land are very limited.

Given mean hunter participation and success rates over the past decade and a half, the 2014 harvest should result in about 650 elk taken. This harvest estimate is predicated on a similar number of elk being harvested from HA 116 on general licenses and a return to average success rates in other areas. However, the long season for antlerless elk hunting in HA’s 116 and 117 (five and a half months) could increase antlerless harvest above predicted values if access to elk improves. If projected harvest levels are reached, elk numbers should decline south of I-90, while elk numbers north of the Interstate may stabilize or increase. Based on an estimated
preseason herd composition of 47:100:40 (calf:cow:bull) and a recruitment rate of 30 yearling elk per 100 cows, a harvest of 650 total elk, or about 620 adult elk, would remove the annual yearling recruitment from a herd of about 3,860 elk (all age classes), a number well above what field personnel believe to be present at this time.

Legend

E740_Revised_WINYLG
E740_Revised_YLG
E740Revised_out
E740 ssf 210

2013 - JCR Evaluation Form

SPECIES: EIk HERD: EL741-LARAMIE PEAK/MUDDY MOUNTAIN		PERIOD: 6/1/2013-5/31/2014
HUNT AREAS: 7, 19		PREPARED BY: HEATHER O'BRIEN
2008-2012 Average	$\underline{2013}$	2014 Proposed
Population: 10,487	7,517	6,299
Harvest: 2,346	2,136	2,305
Hunters: 4,322	4,942	4,500
Hunter Success: 54\%	43\%	51\%
Active Licenses: 4,391	5,028	4,500
Active License Percent: 53\%	42\%	51\%
Recreation Days: 33,798	38,853	35,000
Days Per Animal: 14.4	18.2	15.2
Males per 100 Females 34	31	
Juveniles per 100 Females 40	33	
Population Objective:		5,000
Management Strategy:		Special
Percent population is above (+) or below (-) objective:		50\%
Number of years population has been + or - objective in rece	end:	13
Model Date:		4/7/2014
Proposed harvest rates (percent of pre-season estimate for each sex/age group):		
	JCR Year	Proposed
Females ≥ 1 year old:	20.5\%	24.9\%
Males ≥ 1 year old:	30\%	35.9\%
Juveniles (<1 year old):	10.3\%	11.9\%
Total:	21.6\%	26.1\%
Proposed change in post-season population:	-23.8\%	-28.7\%

Population Size - Postseason

Harvest

Number of Hunters

Harvest Success
\square EL741 - Hunter Success \%
\square EL741 - Active License Success

Active Licenses

Days per Animal Harvested
\square EL741 - Days

Postseason Animals per 100 Females

2008-2013 Postseason Classification Summary
for Elk Herd EL741-LARAMIE PEAK/MUDDY MOUNTAIN

Year	Post Pop	MALES				FEMALES		JUVENILES		Tot Cls	$\begin{aligned} & \text { Cls } \\ & \text { Obj } \end{aligned}$	Males to 100 Females				Young to		
		Ylg	Adult	Total	\%	Total	\%	Total	\%			Ylng	Adult	Total	Conf Int	$\begin{array}{r} 100 \\ \text { Fem } \end{array}$	Conf Int	$\begin{gathered} 100 \\ \text { Adult } \end{gathered}$
2008	11,751	297	512	809	17\%	2,720	57\%	1,208	26\%	4,737	679	11	19	30	± 1	44	± 2	34
2009	11,503	259	572	831	21\%	2,281	57\%	908	23\%	4,020	607	11	25	36	± 2	40	± 2	29
2010	10,755	475	639	1,114	21\%	3,020	58\%	1,094	21\%	5,228	545	16	21	37	± 1	36	± 1	26
2011	9,786	324	548	872	17\%	2,890	57\%	1,298	26\%	5,060	539	11	19	30	± 1	45	± 1	35
2012	8,640	143	362	505	23\%	1,334	60\%	379	17\%	2,218	617	11	27	38	± 2	28	± 2	21
2013	7,517	328	487	815	19\%	2,605	61\%	869	20\%	4,289	535	13	19	31	± 1	33	± 1	25

2014 HUNTING SEASONS

LARAMIE PEAK MUDDY MOUNTAIN ELK (EL741)

Hunt Area	Type	Date of Seasons		Quota	Limitations
		Opens	Closes		
7	1	Oct. 15	Nov. 20	1,500	Limited quota licenses; any elk
		Nov. 21	Dec. 31		Unused Area 7 Type 1 licenses valid for antlerless elk
	4	Oct. 15	Dec. 31	1,250	Limited quota licenses; antlerless elk
	6	Aug. 15	Oct. 14	1,750	Limited quota licenses; cow or calf valid in those portions of Area 7 in Platte County and on private land in Albany and Converse Counties
		Oct. 15	Dec 31		Unused Area 7 Type 6 licenses valid in the entire area
	7	Jan. 1	Jan. 31	500	Limited quota licenses; cow or calf
19	1	Oct. 1	Oct. 14	150	Limited quota licenses; any elk
	2	Nov. 1	Nov. 20	150	Limited quota licenses; any elk
	4	Oct. 1	Oct. 14	125	Limited quota licenses; antlerless elk
	5	Nov. 1	Dec. 31	125	Limited quota licenses; antlerless elk
	6	Oct. 1	Oct. 14	225	Limited quota licenses; cow or calf
		Nov. 1	Dec. 31		Unused Area 19 Type 6 licenses
		Nov. 21	Dec. 31		Unused Area 19 Type 1, Type 2, and Type 4 licenses valid for antlerless elk
Archery		Sep. 1	Sep. 30		Refer to licenses and type limitations in Section 2.

Hunt Area	Type	Quota change from 2013
7	1	-250
	4	0
	6	0
	7	+250
	8	-50
19	1	0
	2	0
	4	0
	5	0
	6	+25
Total	1	$\mathbf{- 2 5 0}$
	6	$\mathbf{+ 2 5}$
	7	$\mathbf{+ 2 5 0}$
	8	$\mathbf{- 5 0}$

Management Evaluation

Current Postseason Population Management Objective: 5,000
Management Strategy: Special
2013 Postseason Population Estimate: 7,500
2014 Proposed Postseason Population Estimate: 6,300

The Laramie Peak / Muddy Mountain Elk Herd Unit has a postseason population management objective of 5,000 elk. The herd is managed using the special management strategy, with a goal of maintaining postseason bull ratios between 30-40 bulls per 100 cows and a high percentage of branch-antlered bulls in the male harvest segment. The objective and management strategy were last reviewed in 2013, when managers and landowners agreed to maintain both the population objective and the special management strategy for bulls.

Herd Unit Issues

Hunting access within the herd unit is variable, with a mix of national forest, state lands, and private lands. The addition of walk-in and hunter management areas greatly expands access to hunting opportunity within the herd unit as well. Landowners offer varying levels of access to hunting. While most landowners offer some form of access - whether it be free or fee hunting there are a few ranches that offer little access. These areas tend to harbor high numbers of elk that are inaccessible during hunting seasons. The main land use within the herd unit is traditional ranching and grazing of livestock; however several properties in the herd unit have become "non-traditional" in that they are owned by individuals who do not make a living by ranching their lands. Industrial-scale developments are minimal within this herd unit, though
there is potential for the expansion of wind energy development. Chronic Wasting Disease is present in this herd at low prevalence (8% in 2012 hunter-harvested elk).

Weather \& Habitat

The summer of 2012 was the driest on record since 1904 in much of Wyoming. Extensive wildfires displaced and redistributed elk, especially in the east-central portion of the herd unit. The severe drought and resulting wildfires likely impacted calf survival, as post-season ratios were markedly low at 28 calves per 100 cows. The winter of 2012 continued to be dry, with very low snow accumulation and snow pack, allowing wide distribution of elk at higher elevations. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013 in much of the herd unit. In early October 2013, winter storm "Atlas" blanketed the area with 12-36" of wet snow, with greater depths at higher elevations. The snow and resulting muddy conditions forced the cancellation of hunting for some license holders, and made accessing elk difficult in many locations. Travel conditions improved for late seasons, but by then it was apparent winter storm Atlas had a negative impact on early hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30-year average, and hunters had good access and success on the Pinto Creek and McFarlane HMAs during December and January. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Field Data

Calf ratios are typically in the 40s per 100 cows for the Laramie Peak / Muddy Mountain Elk Herd. While calf survival can vary from year to year, adult elk in this herd are thought to have rather high rates of survival as there are few natural predators and little mortality from disease and winter weather. Prior to 2005, antlerless license issuance was not adequate to keep up with the production of this herd. Since then, antlerless license issuance has continued to increase, and the population has begun to decrease as harvest pressure on cows has greatly intensified. In 2013, the calf ratio was below average for the second year in a row, with 33 calves per 100 cows. Cow harvest continues to remain high, though weather conditions may have stifled total harvest in 2013. While the low calf production/survival of 2012-2013 will contribute to population decline, continued high license issuance and harvest of cows will be necessary to further reduce this herd toward objective.

Bull ratios for the Laramie Peak / Muddy Mountain Herd historically average in the mid-30s per 100 cows, though there have been years where the ratio has dropped below special management limits into the 20s. It should be noted that the accuracy of bull ratios can change from year to year in this herd. While the herd is covered thoroughly during post-season classifications,
changes in distribution of elk, ability to locate large cow/calf groups, and concealment of bulls in timber during January can skew results from year to year. Issuance of Type 1 any elk licenses has consistently increased in the herd unit along with population growth, and has remained high since 2009. In 2011, it appeared that high Type 1 license issuance may have been taking its toll, as the observed bull ratio dropped to 30 per 100 cows. Type 1 license issuance was high in 2013, but male harvest dropped due to weather and access issues. Hunters and landowners in the Wheatland and Laramie areas expressed concern in 2013 that bull quality may be in decline, though mature bull numbers and quality appeared to be good in the Casper, Glenrock, and Douglas areas. Tooth-age and antler-class data collected annually show a slight increase in average bull age and an increase of Class-II antlered bulls, which contradicts hunter/landowner complaints of fewer mature bulls in the herd (see Appendix A). However, the observed bull ratio in 2013 was 31 per 100 cows - approaching the minimum for special management. Consequently, Type 1 license issuance will be lowered slightly to improve bull ratios and bull quality within the herd unit.

Harvest Data

License success in this herd unit is typically in the $50^{\text {th }}$ percentile. Hunter days per animal have generally increased since 2008, as the population has dropped in size and more effort is necessary to harvest an elk. Hunter crowding on public lands with higher license issuance may be another factor that contributes to higher hunter days per animal. It should also be noted that days per animal can be high in this herd unit as hunters have high expectations regarding bull quality, and will exert more effort in finding a mature bull. Days per animal increased markedly in 2013, indicating that hunters had a more difficult time compared to the 2009-2012 seasons. In addition, habitat changes from 2012 fires may have changed the distribution of elk in 2013, and heavy snowfall made accessing elk more difficult in early seasons. Overall harvest success in 2013 (43%) was lower than the average harvest success of the previous ten years (55\%). Total animals harvested also dropped compared to the 5-year average.

Population

The 2013 postseason population estimate was approximately 7,500 and trending downward from an estimated high of 12,300 elk in 2005. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model.

The "Time-Specific Juvenile Survival - Constant Adult Survival" (TSJ,CA) spreadsheet model was selected to represent the Laramie Peak / Muddy Mountain Herd Unit. This model seemed the most representative of herd dynamics, as it selects for higher juvenile survival during years when field personnel observed more favorable environmental and habitat conditions, particularly
from 2004-2009. The simpler models (CJ,CA and SCJ,CA) select the lowest value for juvenile survival, which does not seem feasible for this herd. The TJS,CS,MSC model was not considered for the Laramie Peak / Muddy Mountain Herd, since it does not have a high level of natural predation. The other three models produce trends that seem representative for this herd, but the CJ,CA and SCJ,CA models estimate a population size that is unrealistically high. Surprisingly, the TSJ,CA model has a low AIC compared to the simpler models, but all models score similarly so the difference in AIC is unimportant in model selection for this herd. The TSJ,CA model appears to be the best representation relative to the perceptions of managers on the ground, and follows trends with license issuance and harvest success. Overall, this model is of fair quality.

Management Summary

Season dates for this herd have changed from year to year, and in general have been liberalized over time to maximize harvest and reduce damage on agricultural fields. Season dates will be similar for the 2014 season, with a couple of minor changes. The early cow rifle season for the Area 7-Type 6 licenses will now be valid on private lands in Converse County to address damage to agricultural fields on private lands, and the Type 8 license specific to Converse County will be eliminated. This should provide cow hunters more options in the early season without confining them to specific parcels of private land. All license types except Type 7 licenses will continue to close on December $31^{\text {st }}$. Area 7-Type 7 licenses will again be valid in January only, but an additional 250 licenses will be added. Managers in the Laramie and Wheatland portions of Area 7 were very pleased with the January season but wanted additional licenses to take advantage of cow/calf herds that were available near the Pinto Creek and McFarlane HMAs. Area 7-Type 1 licenses will be decreased to 1,500 , to improve bull ratios and quality. Area 19 Type 6 licenses will be increased by 25 to offer additional hunter opportunity and hopefully increase cow harvest. Access is predicted to be similar in 2014 to previous years. Goals for 2014 are to continue reduction of the herd towards objective, to maintain bull ratios within special management limits, maintain good harvest success, and reduce elk damage to agricultural fields.

If we attain the projected harvest of 2,305 elk with average calf ratios, this herd will decline further toward objective. The predicted 2014 postseason population size of the Laramie Peak / Muddy Mountain Elk Herd is approximately 6,300 animals, which is 26% above objective.

FIGURES

Comments:
łuәubes łunyəad $\ddagger 0$ \%

APPENDIX A:

Tooth-Age and Antler Class Data for Laramie Peak / Muddy Mountain Elk

The Laramie Peak / Muddy Mountain Elk Herd Unit (Wyoming Hunt Areas 7 \& 19) has historically built a reputation for superior hunting, both in terms of high bull ratios and bull quality. Bull ratios are managed under the special management criteria, with a goal of maintaining $30-40$ per 100 cows. Bull quality is monitored annually using cementum annuli tooth age from a sample of hunter-harvested elk and categorical postseason classifications based on antler size.

Tooth age data from the Laramie Peak / Muddy Mountain herd have been collected in nearly all years from 1997-2013. Tooth samples are solicited from both bull and cow elk hunters, as female age data is more representative of a random sample across age classes, while bull age data is potentially biased towards hunter preferences for more mature age classes. Sample size has varied from year to year depending upon hunter response rates. In 2013, a total of 965 "any elk" hunters and 650 antlerless elk hunters in the herd unit were solicited for tooth samples. Of those solicited, 150 returned teeth from bulls and 78 returned teeth from cows. Samples received from calf elk were removed from resulting totals so as not to skew statistics on adult age classes.

Average tooth age of sampled adult males has slowly increased since 1999, while average tooth age of female elk has remained relatively stable (see Figure $1 \& 2$). In 2013, the average age of female elk sampled was 5.70, and the average age of male elk was 6.07. Median age of females was 5.5 and of males was 6.0 . Of those bulls sampled, 47% were age $2-5$ and 49% were age 6 10. Of those cows sampled, 61% were age $2-5$ and 26% were age $6-10$. This disparity between harvested bull age versus harvested cow age illustrates hunter preferences for older aged bulls.

Percentage of bulls aged 6-10 has gradually increased from 2001-2013, indicating that older ageclass bulls have been increasingly available for harvest. This contradicts some years of observed antler class data during the same time period that shows a decline of Class II (6 points on a side or better) bulls in the herd (see Figure 3). This disparity may be due to increased selectivity of hunters for older age-class bulls, compared to the more random sample of bulls surveyed during postseason classification flights. In addition, hunters submitting teeth may be biased towards older age class bulls, as hunters who are pleased with the quality of their animals may be more likely to submit samples. Regardless, one must assume inherent biases within this sampling scheme apply equally across years. Thus, emerging trends in mean and median ages of sampled bulls warrant discussion.

The increasingly high percentage of older age-class bull elk is a surprising trend, considering that managers believe this herd has been decreasing since 2009. License issuance has remained high,
and one would expect it to become more and more difficult to find and harvest older age-class bulls in a declining population. At the same time, average tooth age of sampled cows has slowly decreased since 2007 but was higher (and very similar to bull tooth age) in 2013, while license issuance and season length have been liberalized. This seems to corroborate the declining trend seen in the population model.

Trends in antler class of classified bull elk are more difficult to interpret on their own. Percentage Class II bulls declined from 2008-2011, but then increased in 2012 and 2013. During the same time period, average tooth-age of harvested bulls increased steadily from 5.01 to 5.99 . The divergence between the two data sets in 2012-2013 suggests antler quality is not necessarily correlated positively with bull age for this herd. Factors such as nutrition, genetics, or classification biases may also be contributing to antler quality. Trends in the tooth-age dataset certainly temper any assumptions made regarding changes in the antler class dataset and aids in making sound management decisions for this herd. Collectively, these data seem to indicate this herd can continue support a high number of any-elk licenses and a high level of harvest without compromising bull ratios or bull quality. Any observed decline in Class II bulls during postseason classifications may be related more to environmental variables, as it is not borne out in tooth age data.
Figure 1. Tooth-age data analysis for adult bull elk harvested within the Laramie Peak/Muddy Mountain Herd Unit, 1997 - 2013.

Year	Number of Adult Males per Age Class (Tooth Sampling)																					
	1+	2+	3+	4+	5+	6+	7+	8+	9+	10+	11+	12+	13+	14+	15+	16+	17+	18+	19+	20+	21+	22+
1997	7	13	5	5	6	2	2	3	0	2	1	0	0	0	0	0	0	0	0	0	0	0
1998	1	16	19	10	10	4	3	2	1	2	1	0	0	0	0	0	0	0	0	0	0	0
1999	20	26	39	24	16	9	8	1	2	0	0	1	0	0	0	0	0	0	0	0	0	0
2000	22	36	41	28	24	13	6	1	3	1	1	0	0	0	0	1	0	0	0	0	0	0
2001	15	22	27	29	14	10	3	3	1	0	2	2	0	0	0	0	0	0	0	0	0	0
2004	7	8	16	19	6	10	5	3	1	0	1	0	0	0	0	0	0	0	0	0	0	0
2005	6	3	27	16	10	11	6	0	3	0	1	0	0	0	0	0	0	0	0	0	0	0
2007	1	11	24	18	12	12	8	3	0	0	1	1	0	0	0	1	0	0	0	0	0	0
2008	4	2	19	24	22	17	12	3	2	1	1	0	0	0	0	0	0	0	0	0	0	0
2010	4	3	16	27	32	27	13	2	1	2	5	1	0	0	0	0	0	0	0	0	0	0
2011	7	9	11	19	25	24	7	4	6	3	3	0	0	0	0	0	0	0	0	0	0	0
2012	2	9	9	22	22	20	9	3	4	0	1	0	0	0	0	0	0	0	0	0	0	0
2013	3	3	11	33	22	40	11	9	7	4	1	0	2	0	0	0	0	0	0	0	0	0

$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ \frac{0}{0} \\ 0 \end{array}\right\|$	$\begin{aligned} & \stackrel{+}{\underset{\sim}{2}} \\ & \stackrel{N}{\mathbf{T}} \end{aligned}$	
	운	
	$\begin{aligned} & \mathbf{L} \\ & \stackrel{N}{N} \end{aligned}$	ㅇํ ㅇํ ㅇํㅇํ ㅇํ ㅇํ ㅇํ ㅇํ ㅇํ ㅇ
	¢	

$\begin{array}{ll} 0 & 0 \\ \hline & 0 \\ \hline & 0 \\ 4 \end{array}$	
	000 -000 ROOOON
$\begin{aligned} & \stackrel{\star}{\overleftarrow{\circ}} \\ & \stackrel{\rightharpoonup}{\boldsymbol{1}} \end{aligned}$	

Figure 2. Tooth-age data analysis for adult female elk harvested within the Laramie Peak/Muddy Mountain Herd Unit, 1997 - 2013.

$\frac{0}{8} \frac{0}{4}$	
z	
$\stackrel{+}{+}$	
$\stackrel{\text { N }}{\stackrel{1}{1}}$	
$\stackrel{\text { 안 }}{ }$	
$$	
F	
\%	
	27

Figure 3. Antler classification of bull elk from the Laramie Peak/Muddy Mountain Herd Unit, 20082013.

Mature Bull Antler Classification									
Bio- Year	Area 7 (N/ \%)			Area 19 ($\mathrm{N} / \mathrm{\%}$)			EL 741 (N/ \%)		
	Class I	Class II	Total	Class I	Class II	Total	Class I	Class II	Total
2008	$\begin{gathered} 82 \\ (23 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 270 \\ (77 \%) \\ \hline \end{gathered}$	352	$\begin{gathered} 41 \\ (26 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 119 \\ (74 \%) \end{gathered}$	160	$\begin{gathered} 123 \\ (24 \%) \end{gathered}$	$\begin{gathered} 389 \\ (76 \%) \end{gathered}$	512
2009	$\begin{gathered} 211 \\ (49 \%) \end{gathered}$	$\begin{gathered} 219 \\ (51 \%) \\ \hline \end{gathered}$	430	$\begin{gathered} 58 \\ (41 \%) \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ (59 \%) \\ \hline \end{gathered}$	142	$\begin{gathered} 269 \\ (47 \%) \end{gathered}$	$\begin{gathered} 303 \\ (53 \%) \end{gathered}$	572
2010	$\begin{gathered} 246 \\ (47 \%) \end{gathered}$	$\begin{gathered} 280 \\ (53 \%) \end{gathered}$	526	$\begin{gathered} 61 \\ (54 \%) \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ (46 \%) \end{gathered}$	113	$\begin{gathered} 307 \\ (48 \%) \end{gathered}$	$\begin{gathered} 332 \\ (\mathbf{5 2 \%}) \end{gathered}$	639
2011	$\begin{gathered} \hline 278 \\ (69 \%) \\ \hline \end{gathered}$	$\begin{gathered} 128 \\ (31 \%) \\ \hline \end{gathered}$	406	$\begin{gathered} 104 \\ (73 \%) \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ (27 \%) \\ \hline \end{gathered}$	142	$\begin{gathered} 382 \\ (\mathbf{7 0 \%}) \\ \hline \end{gathered}$	$\begin{gathered} 166 \\ (30 \%) \\ \hline \end{gathered}$	548
2012	$\begin{gathered} 76 \\ (56 \%) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (44 \%) \\ \hline \end{gathered}$	136	$\begin{gathered} 160 \\ (71 \%) \end{gathered}$	$\begin{gathered} 66 \\ (29 \%) \\ \hline \end{gathered}$	226	$\begin{gathered} 236 \\ (65 \%) \end{gathered}$	$\begin{gathered} 126 \\ (35 \%) \end{gathered}$	362
2013	$\begin{gathered} 213 \\ (56 \%) \end{gathered}$	$\begin{gathered} 169 \\ (44 \%) \end{gathered}$	382	$\begin{gathered} 57 \\ (54 \%) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (46 \%) \\ \hline \end{gathered}$	105	$\begin{gathered} 270 \\ (55 \%) \end{gathered}$	$\begin{gathered} 217 \\ (\mathbf{4 5 \%}) \end{gathered}$	487

Laramie Peak/Muddy Mountain Elk Herd Unit
(EL741)
Revised May 18, 2010
Hunt Areas 7 \& 19

2013 - JCR Evaluation Form

SPECIES: Elk		PERIOD: 6/1/2013-5/31/2014
HERD: EL742 - RATTLESNAKE		
HUNT AREAS: 23		PREPARED BY: HEATHER

Population Size - Postseason

Harvest

Number of Hunters

Harvest Success
\square EL742 - Hunter Success \% $\square \begin{aligned} & \text { EL742 - Active License Success } \\ & \%\end{aligned}$

Active Licenses

\square EL742 - Active Licenses

Days per Animal Harvested
\square EL742 - Days

Postseason Animals per 100 Females
\square EL742 - Males \square EL742 - Juveniles

2008-2013 Postseason Classification Summary

2014 HUNTING SEASONS

RATTLESNAKE ELK (EL742)

Hunt Area	Type	Date of Seasons		Quota	Limitations
		Opens	Closes		
23	1	Oct. 1	Oct. 31	125	Limited quota licenses; any elk
		Nov. 15	Dec. 15		Unused Area 23 Type 1 licenses
	4	Oct. 1	Oct. 31	125	Limited quota licenses; antlerless elk
		Nov. 15	Dec. 15		Unused Area 23 Type 4 licenses, also valid in Area 128
	6	Oct. 1	Oct. 31	200	Limited quota licenses; cow or calf
		Nov. 15	Dec. 15		Unused Area 23 Type 6 licenses, also valid in Area 128
Archery		Sep. 1	Sep. 30		Refer to license and type limitations in Section 2

Hunt Area	Type	Quota change from 2013
23	1	0
	4	0
	6	0
	7	0

Management Evaluation

Current Postseason Population Management Objective: 1,000
Management Strategy: Recreational
2013 Postseason Population Estimate: 1,100
2014 Proposed Postseason Population Estimate: 1,000
The Rattlesnake Elk Herd Unit has a postseason population management objective of 1,000 elk. The herd is managed using the recreational management strategy, with a goal of maintaining postseason bull ratios of 15-29 bulls per 100 cows. The objective and management strategy were revised in 2012 from a postseason objective of 200 to 1,000 . The old objective was antiquated, unreasonable, and inadequate to meet the expectations of hunters, landowners, and managers.

Herd Unit Issues

Hunting access within the herd unit is variable. The majority of occupied elk habitat is accessible for hunting via public land and hunter management area access. However, there is one ranch within the central part of occupied habitat that does not allow any access for hunting and harbors the vast majority of elk within the herd unit. Hunters have expressed frustration when elk take refuge in this area, as they tend to remain there due to low hunter pressure and good forage conditions. The main land use within the herd unit is traditional ranching and grazing of livestock, with isolated areas of oil and gas development. There is the potential for future mining of precious metals and rare earth minerals in the hunt area, but current levels of activity are low. Disease outbreaks are not a concern in this herd unit.

Weather

The summer of 2012 was the driest on record since 1904 in much of Wyoming, though it did not seem to effect elk distribution within this herd unit. The winter of 2012 continued the dry trend with very low snow accumulation and snow pack, allowing wide distribution of elk. April of 2013 finally saw a break in the drought, when temperatures dropped below normal for the entire month and significant precipitation was received. This cooler and wetter pattern continued through the summer of 2013 in much of the herd unit. In early October 2013, winter storm "Atlas" blanketed the area with 12-36" of wet snow, with greater depths at higher elevations. The snow and resulting muddy conditions forced the cancellation of hunting for some license holders, and made accessing elk difficult in some locations. In contrast, heavy snows in several cases elicited movement of elk and created opportunity for harvest on public lands within the herd unit. Travel conditions improved for late seasons, but by then it was apparent winter storm Atlas had a negative impact on early hunter participation and harvest success. The early winter months of 2013-2014 brought temperature and precipitation conditions near the recent 30-year average, and hunters had improved access and success during the late cow season. For detailed weather data see http://www.ncdc.noaa.gov/gac/time-series/us.

Habitat

Currently there are no established habitat transects to quantify vegetative production or utilization trends in the herd unit. Anecdotally, field personnel observed improved habitat conditions in 2013 compared to the severe drought of 2012.

Field Data

Observed calf ratios are highly erratic in this herd unit due to varying survey conditions and levels of effort across years. Thus it is difficult to correlate changes in population size or make
decisions regarding license issuance based on observed calf ratios. Instead managers continue to focus on maximizing cow harvest without over-saturating the area with hunter pressure. Increases in license issuance are not warranted unless access improves and there are no large areas where elk can take refuge from harvest pressure.

Observed bull ratios are also highly erratic as a result of variable survey conditions and levels of effort from year to year. Since 2001, observed bull ratios have ranged from as low as 13 to as high as 58 per 100 cows. Years with low observed bull ratios were followed by years with much higher observed ratios; indicating bulls were likely missed during classification surveys in some years, or elk are immigrating/emigrating to and from adjacent hunt areas. Again, license issuance and season structure changes in this herd are not typically made based on observed bull ratios. Instead, seasons are designed to maximize cow harvest and maintain relatively good license success without overcrowding hunters.

Harvest Data

License success in this herd unit is typically in the $40^{\text {th }}$ percentile and is fairly consistent, indicating that opportunity has remained relatively similar across years. Hunter days per animal fluctuate from year to year, but this may be a function of changes in access due to weather and road conditions. The persistence of unattainable elk in the aforementioned private land refugia most certainly contributes to increased hunter days and reduced harvest success in most years. In 2013, weather conditions were severe enough to force elk onto adjacent public lands where they were more readily harvested. The new split season in 2013 also facilitated movement of elk off of private refugia. During the two-week closure mid-season, hunting pressure was removed and elk began to move back to public lands. Late-season licenses were also valid for use in the adjacent Hunt Area 128. Field personnel received several positive comments from hunters and landowners who were pleased with both of these changes to the hunting season. Overall harvest (157) increased significantly compared to 2012 (117).

Population

The 2013 postseason population estimate was approximately 1,100 and decreasing. Postseason classification data and harvest data are applied to the model to predict population size and trends for this herd. No sightability or other population estimate data are currently available to further align the model. Managers are currently discussing expanding this herd into a portion of Area 128, where interchange of animals is known to occur. Modeling a larger herd with less interchange should produce a higher quality model that predicts trends more accurately.

The "Constant Juvenile Survival - Constant Adult Survival" (CJ,CA) spreadsheet model was selected for the postseason population estimate of this herd. This population is difficult to model
as it is small in size and appears to have consistent interchange with an adjacent herd, thus violating the closed population assumption of the model. High variability in observed bull ratios also render this herd challenging to model. The TSJ,CA model was discarded, as it predicts population sizes that are lower than actual observed survey totals. When juvenile survival was increased in years known to have mild winter conditions, the SCJ,CA model also predicted a population size lower than actual numbers of elk observed. The TSJ,CA,MSC model was not used as it does not seem applicable or necessary for this herd, which does not have elevated predation rates from large carnivores. While the CJ,CA model appears to be the best choice to represent the herd, it should be noted that this model selected for the lowest juvenile and the highest adult constraints, indicating that it is of poor quality. Managers recommend combining or re-drawing this and adjacent herds to account for interchange and to model a more closed population in future years.

Management Summary

Opening day of hunting season in this herd is traditionally October $1^{\text {st }}$, and closing dates have differed with changing harvest prescriptions from year to year. Season structures have also changed to include split seasons in some years in an attempt to maximize cow harvest. Input from hunters following the 2012 season indicated poor bull hunting opportunity. Thus for 2013, season dates were extended significantly for bull hunting. Since this appeared to work well in 2013, the same season is being implemented for 2014. Goals for 2014 are to continue high harvest pressure on cows, extend opportunity to hunt bulls, and improve overall harvest success.

If we attain the projected harvest of approximately 179 elk and assuming average calf production/survival, this herd will maintain itself near objective. The predicted 2014 postseason population estimate for the Rattlesnake Elk Herd is approximately 1,000 animals, which is at objective.

FIGURES

uo!̣еן

Comments:
цuәubəS łunчəлd $\ddagger 0$ \%

Elk - Rattlesnake
Hunt Area 23
Casper Region
Revised 8/94

2013 - JCR Evaluation Form

SPECIES: Elk		PERIOD: 6/1/2013-5/31/2014	
HERD: EL743-PINE RIDGE			
HUNT AREAS: 122	2008-2012 Average	PREPARED BY: HEATHER O'BRIEN	
		$\underline{2013}$	2014 Proposed
Hunter Satisfaction Percent	80\%	92\%	90\%
Landowner Satisfaction Percent	57\%	33\%	60\%
Harvest:	44	95	100
Hunters:	65	126	130
Hunter Success:	68\%	75\%	77\%
Active Licenses:	68	134	145
Active License Percentage:	65\%	71\%	69\%
Recreation Days:	297	600	520
Days Per Animal:	6.8	6.3	5.2
Males per 100 Females:	0	0	
Juveniles per 100 Females	0	0	
Satisifaction Based Objective			60\%
Management Strategy:			Private
Percent population is above (+) or	(-) objective:		2\%
Number of years population has	een + or - objective in	trend:	1

Harvest

Number of Hunters

Harvest Success
\square EL743 - Hunter Success \%
EL743-Active License Success

Active Licenses

\square EL743 - Active Licenses

Days per Animal Harvested
\square EL743 - Days

Postseason Animals per 100 Females

2014 HUNTING SEASONS

PINE RIDGE ELK (EL743)

Hunt Area	Type	Date of Seasons Opens	Closes	Quota	Limitations
122	1	Oct. 15	Nov. 30	75	Limited quota licenses; any elk
		Dec. 1	Dec. 14		Unused Area 122 Type 1 licenses valid for antlerless elk
Archery		Sep. 1	Sep. 30		Limited quota licenses; cow or calf Refer to license and type limitations in Section 2

Hunt Area	Type	Quota change from 2013
122	1	-25
	6	0

Management Evaluation

Current Hunter/Landowner Satisfaction Management Objective: 60\% hunter/landowner satisfaction; bull quality
Management Strategy: Private Land 2013 Hunter Satisfaction Estimate: 92\%
2013 Landowner Satisfaction Estimate: 33\%
Most Recent 3-year Running Average Hunter Satisfaction Estimate: 84\%
Most Recent 3-year Running Average Landowner Satisfaction Estimate: NA

The Pine Ridge Elk Herd Unit has a management objective based on 60% or higher landowner and hunter satisfaction. As a secondary objective, managers strive to maintain a bull harvest consisting of 60% mature, branch-antlered bulls. This objective was revised in 2012. An objective based upon postseason population estimates was not feasible for this herd unit.

Herd Unit Issues

Nearly all elk in this herd reside in and along the timbered Pine Ridge escarpment in the north central portion of the herd unit. Land use consists of traditional ranching and livestock grazing mixed with areas of intensive oil and gas, wind, and uranium development. Access to hunting is tightly controlled by private landowners, and achieving adequate harvest to manage growth of this herd is very difficult. Most landowners have historically voiced satisfaction with the number of elk on their lands within this herd, thus hunter access has remained restricted. More recently,
some landowners have begun to complain of fence damage and competition of elk with their livestock. Other landowners complain that elk compete with their livestock in the winter, but are not available on their property for harvest during the hunting season. Many landowners that control access to elk in this herd charge high fees for bull hunting, and access for cow/calf hunting is limited such that two thirds of Type 6 licenses typically remain unsold annually. This herd will continue to grow and cause damage issues until landowners open their properties to increased cow harvest.

Weather \& Habitat

The Pine Ridge Elk Herd resides in relatively low-elevation habitat, and weather typically has minimal influence on elk movements. In addition, there are no habitat or classification data collected in this herd unit given the Department's minimal management influence and budgetary constraints. Thus there are no population or habitat data to correlate to weather conditions.

Field Data

Fixed-wing winter trend counts are conducted in the herd unit as budget and weather conditions allow. Past trend counts of this herd typcally found between 150 and 350 elk. In 2013, a winter trend count conducted under optimum conditions found a total of 840 elk. These results further indicated to mangers this herd was larger than previously believed. A trend count conducted in February 2014 found a total of 454 elk; however snow conditions were not ideal and elk were difficult to see bedded amongst exposed rocks and shrubs. Managers still estimate that there are likely 900-1,000 elk in this herd, if not more.

Landowner and hunter satisfaction surveys are used to manage the Pine Ridge Elk Herd Unit. Survey results must show that 60% hunters alike were either "satisfied" or "very satisfied" with the previous year's hunting season. In addition, landowner surveys must show that 60% or more respondents believe the herd to be "at or about at desired levels" in order to justify similar seasons for the following year. A secondary objective is also used in the Pine Ridge Elk Herd Unit to anchor the results of satisfaction surveys to a population parameter. In this case, age class targets are determined from the harvest survey and used as a measure of bull quality. The percentage of mature (i.e. branch-antlered) bulls in the male portion of the annual harvest is used, with a 3 -year trend average of 60% minimum being the threshold for management action. In $2013,50 \%$ of landowners believed the elk herd to be "at or about at desired levels", while 92% of hunters who returned surveys said they were "satisfied" or "very satisfied" with the number of elk in the Pine Ridge Elk Herd Unit. For the secondary objective, the three-year average for mature bulls in the harvest was 83%. While hunter satisfaction and quality of harvested bulls exceeded the 60% threshold, landowner perceptions of the herd did not. Managers are therefore tasked with making changes to the 2014 hunting season in an attempt to improve landowner
perceptions. Comments from landowners who responded to the satisfaction survey included complaints regarding over-harvest of bulls and loss of trophy quality, complaints of damage from too many elk, requests for a shorter hunting season, and complaints about neighbors hazing elk for harvest.

Harvest Data

Hunter success in this herd unit is typically in the $50-70^{\text {th }}$ percentile and fluctuates with access and license issuance. Hunter success has remained high for the last 5 years, but antlerless elk licenses have remained undersold as landowners are unwilling to allow access for cow hunters. Improved harvest success is likely associated with a growing number of elk in the Pine Ridge Herd. In addition, an increase in Type 1 licenses in 2013 resulted in a 238% increase in bull harvest compared to the 5 -year average (50 versus 21 bulls harvested, respectively). Antlerless licenses sales also increased (42% unsold) compared to past years (average 67% unsold), which was attributed to the increase in Type 1 license issuance and hunters buying antlerless tags in addition. Despite improved hunter success, leftover antlerless licenses indicate landowner tolerance of hunters still remains low while tolerance of elk (despite growing complaints) remains high. Until landowners agree to provide more liberal access to antlerless elk hunters, an increase in antlerless elk license issuance is not warranted. Since a portion of landowner dissatisfaction was attributed to perceived loss of bull quality, Type 1 license issuance will be reduced for 2014. Managers are hopeful that encouraging landowners to take bull hunters who are also willing to buy a reduced-price Type 6 tag will increase cow harvest in the herd unit. Landowners will need to do this, or tolerate additional cow hunters in order to reduce the herd and eliminate damage issues.

Management Summary

The elk season in this herd unit opens on October $15^{\text {th }}$ following the close of deer seasons. In more recent years, closing dates have been extended as landowners have agreed to somewhat liberalize access later in the season. The same season dates will be used for 2014, with a decrease of Type 1 licenses to reduce harvest pressure on bulls. An increase of Type 6 licenses cannot be justified until access improves for antlerless hunters within the herd unit. Goals for 2014 are to increase communications with landowners to discuss options that will increase female elk harvest, to improve hunting access, and ultimately improve landowner satisfaction regarding elk numbers in this herd.

[^0]: ${ }^{1}$ Different technique applied to measure utilization in 2007. Results may not be directly comparable to previous years.

[^1]: ${ }^{2} 2014$ Revised model estimate for 2006 (not recorded in JCR database)

[^2]: ${ }^{1}$ Trend counts not conducted in 2013 due to winter storm Atlas.

[^3]: ${ }^{1}$ Based upon individual contacts with 30 landowners in Jan. \& Feb., 2014; bio-year 2012 value (51\%) based upon mail survey to 167 landowners and 71 useable responses.
 ${ }^{2}$ Actually a 2-year average, no data available for bio-year 2011.
 ${ }^{3}$ Based upon revised seasonal range map Feb., 2014.

[^4]: ${ }^{4}$ Budgetary constraints prevented tooth age data collection in 2002 \& 2003.
 ${ }^{5}$ Omitting 1990 data reduces this average to 15.3% with a std. dev. 6.2%.

[^5]: ${ }^{6}$ Including 1990 data in T-test yields a significant difference $(\mathrm{P}=0.0002)$ with Mean ${ }_{(1987-1990)}$ of 22%; and Mean (2000-2013) of 10.8\%.

