Instream flow studies on Shoal Creek, a tributary of the Hoback River

Mike Robertson, Fisheries Biologist, Wyoming Game and Fish Department, 5400 Bishop Blvd, Cheyenne, WY 82006

Abstract

One segment was selected for instream flow water rights filing consideration on Shoal Creek, a tributary of the Hoback River near Bondurant, WY. This segment was selected considering land ownership, hydrology, and stream channel characteristics to maintain or improve the Snake River cutthroat trout (SRC) fishery in this stream. The species is common throughout the Hoback River watershed, which is managed as a wild SRC fishery, but remains a species of concern within its range in Wyoming. This report (also available online at http://gf.state.wy.us/fish/instreamflow/) provides flow recommendations for Shoal Creek developed from studies conducted in 2009. Several modeling techniques were used to develop instream flow recommendations for maintaining SRC spawning habitat during spring runoff, including Physical Habitat Simulation for calculations of habitat suitability during various flow conditions. In addition, riffle hydraulic characteristics were examined using the Habitat Retention approach to ensure that flow recommendations from other methods did not impede fish movement. The Habitat Quality Index model was used to assess stream flow versus juvenile and adult trout habitat quality relationships in the summer. During the winter months, November through March, natural winter flows were recommended to maintain all life stages. The 20% monthly exceedance, based on hydrologic estimates from HabiTech (2009), was selected to represent natural winter flow. Finally, a dynamic hydrograph model was used to quantify flow needs for maintaining existing habitat characteristics, processes, and ecological function (maintenance of channel geomorphology).

Approximately 6.4 miles of stream habitat will be directly protected if this instream flow application advances to permit status. Recommended flows in the segment range from a low of 6.0 cubic feet per second (cfs) during the winter to 45 cfs during spring.

Introduction

Healthy Rivers and Streams in Wyoming

There are five primary riverine components that are used to characterize a stream or river; its hydrology, biology, geomorphology, water quality and connectivity (Annear et al. 2004). When the hydrology is changed, other components are influenced to varying degrees. As water resources are developed in Wyoming for out-of-stream, or consumptive, uses there are corresponding changes in other riverine components that may alter the quality of a stream for supporting fisheries habitat. Rivers and streams are important to the residents of Wyoming, as evidenced by the passage of W.S. 41-3-1001-1014 in 1986 that established instream flows as a beneficial use of water when used to maintain or improve existing fisheries. The statute directed
that any unappropriated water flowing in any stream or drainage in Wyoming may be appropriated for instream flows when it provides this beneficial use. The statute and Wyoming water law clearly note that all existing water rights in that stream remain unaffected.

Purpose for Hoback River Instream Flow Studies and Water Rights

Studies designed to evaluate the instream flow needs for fisheries in Wyoming are initiated by the Wyoming Game and Fish Commission. These studies do not address all five riverine ecosystem components (e.g. long-term habitat processes), but focus on the goal of “maintaining or improving” existing habitat for important fisheries throughout the state (see Appendix B for more information on instream flows in Wyoming). Guidance for selecting streams to evaluate statewide was provided by the Wyoming Game and Fish Department (WGFD), Water Management Unit’s five-year plan (Annear and Dey 2006). The five-year plan identified and prioritized high quality habitats for instream flow studies and identified native Yellowstone cutthroat trout (YSC; *Oncorhynchus clarki bouvieri*) and Snake River cutthroat trout (SRC; *Oncorhynchus clarki behnkei*) as the greatest priority species for this planning period. The plan specifically identified the Greys-Hoback watershed as the highest priority for conducting instream flow studies.

Yellowstone cutthroat and SRC were prioritized for instream flow studies, in part, because these cutthroat trout subspecies were recently considered for federal listing as threatened or endangered. Between 1998 and 2006, there were several actions regarding these two subspecies, including a decision to treat the two as “a single entity” (Federal Register 2001, Federal Register 2006). The most recent finding of the U.S. Fish and Wildlife Service was that the species (aggregate of both subspecies) does not warrant endangered species designation (Federal Register 2006). In response to the petition for federal listing of YSC, the WGFD developed significant, targeted management efforts to protect and expand habitat and populations of both YSC and SRC within their historic range (WGFD 2005a) and has participated in multi-state strategic planning efforts (Range-Wide YCT Conservation Team 2009a, 2009b).

Yellowstone cutthroat trout historically occupied Wyoming waters in the Snake River and Yellowstone River drainages, including the tributary Wind/Bighorn and Tongue River drainages (Behnke 1992, Kruse et al. 1997, Dufek et al. 1999, Kruse et al. 2000, May et al. 2003). The range of SRC occurs within the range of the more widely distributed YSC and includes the headwaters of the Snake River and its tributaries (Van Kirk et al. 2006, May et al. 2007). There is some debate about whether YSC and SRC are distinct subspecies (Van Kirk et al. 2006, Sweet 2009). Leary et al. (1987) was not able to differentiate the two subspecies using genetics and Kruse (1998) did not find meristic differences (counting features such as fins rays or scales) between the two subspecies. However, they are morphologically distinct and are not typically found in the same watersheds, so the WGFD manages them individually (Gipson 2006, Sweet 2009).

The prioritization of watersheds and streams for instream flow studies in Wyoming was based on available information on YSC and SRC populations, including genetic status and population demographics. A range-wide status assessment conducted by fisheries biologists from Wyoming, Montana, and Idaho (May et al. 2003, May et al. 2007) identified conservation populations and assessed the relative extinction risk among populations. Of the extant populations in Wyoming, those in the Greybull River, Wood River, and East Fork Wind River were believed to contain genetically pure populations that span a large geographic area (Kruse et al. 2000) and these streams were targeted for instream flow studies during 1997 through 2006.
The next watershed in line for priority was the Greys-Hoback and tributaries of these two rivers. These were identified as high priority streams for instream flow studies because much of the watershed contains SRC populations of high genetic purity. Since genetic status of the SRC population was similar within this watershed (predominantly unaltered; Novak et al. 2005), individual streams were selected based on current understanding of their importance to the local SRC population in terms of contributing to the long-term persistence of the population (e.g., does a stream contain important spawning habitat that is regularly used?), the length of stream (longer streams provide greater protection for level of effort expended), and for logistics (streams selected in a small geographic area for a given year can be more efficiently studied). In 2008–2010 studies were conducted on the Hoback River and its tributaries and in 2010 a study was conducted on the largest tributary of the Greys River, the Little Greys River.

Objectives

The objectives of this study were to quantify year-round instream flow levels needed to maintain SRC habitat and identify a channel maintenance flow regime needed to maintain long-term trout habitat and related physical and biological processes (Appendix A). The audience for this report is broad and includes the State Engineer and staff, the Water Development Office, aquatic habitat and fishery managers, and non-governmental organizations and individuals interested in instream flow water rights and SRC management in general or in the Hoback River watershed in particular.

Study Area

Hoback River Basin

The Hoback River enters the Snake River at Hoback Junction, approximately 17 miles downstream of the Highway 189 crossing in Wilson, Wyoming (FIGURE 1). The basin includes two separate watersheds classified at the 5th level hydrologic unit code (HUC) scale, the upper (HUC 1704010303) and lower (HUC 1704010304) Hoback River. In total, the two watersheds comprise an area of 566 square miles, which is about 10% of the Snake River headwaters basin (HUC 170401) area. Land ownership in the watershed includes 5.3% private land and 94.7% public land. The public land includes 94.3% Forest Service land and 0.4% Bureau of Land Management land. Recreational uses in the drainage include wildlife observation, hiking, fishing, camping, hunting, floating the river, horseback riding and packing, cross country skiing, snow machine riding, and snowshoeing.
The Hoback River basin elevation ranges from 5,900 ft at the mouth of the Hoback River to 11,682 ft at Doubletop Peak in the Dell Creek watershed. There are several tributaries in the Hoback watershed where glacial influence resulted in U-shaped valleys (Rosgen valley type V) and others with more gradual sloping sides (Rosgen type II). The Hoback River itself travels predominantly east to west through a series of north-south oriented mountains and this results in more valleys with gradual sloping sides. However, there are some areas (in the middle and lower parts of the river) that have well developed floodplains (Rosgen Type VIII valleys). Stream channels throughout the Hoback River basin would be primarily classified as Rosgen type “B” and “C” from inspection of 1:24,000 scale topographic maps. There are also some braided “D” channels in those places where the valleys are not constricted and a wide floodplain is present.

The climate in this watershed includes annual precipitation that averaged 21.1 inches in the town of Bondurant over the period 1948–2005 according to data from the Western Regional Climate Center (WRCC 2011). Much of the precipitation falls as snow with an average of 138.7 inches annually from 1948–2005. The average minimum air temperature was 15.9°F and the
average maximum was 50.7°F in that same period. Winter conditions typically result in widespread frazil and anchor ice development and this may impact over-winter habitat for fish.

As part of its strategic habitat plan (SHP), the WGFD has prioritized the upper Hoback watershed as a “crucial habitat area” for aquatic habitat. The lower Hoback basin is an “enhancement habitat area” for aquatic habitat in the Jackson Region (WGFD 2009). According to the SHP, “crucial habitats have the highest biological values, which should be protected and managed to maintain healthy, viable populations of terrestrial and aquatic wildlife. These include habitats that need to be maintained as well as habitats that have deteriorated and should be enhanced or restored.” The plan also states that enhancement areas “are important wildlife areas that can or should be actively enhanced or improved by WGFD and partners over the next few years if opportunities exist.”

Geology

The Hoback River Basin lies within the overthrust belt region of the state, which is described as “a series of large overthrust sheets of rock that overlap one another like shingles on a roof.” This region is a short section of a longer trend of thrust faults and folds that extend approximately 5,000 miles between Alaska and Mexico (Lageson and Spearing 1996). These faults are relatively shallow and flat and do not cut into Precambrian basement rocks. The exposed rocks in this watershed are primarily sandstone and shale (Eocene Wasatch formation) which were deposited as stream and floodplain sediments (Lageson and Spearing 1996). The soils are mainly characterized as gravelly sandy loams (BLM 2003). The Hoback River watershed also has evidence of being influenced by glaciers with some valleys in the watershed displaying characteristic U-shaped cross-sectional profiles (e.g., Granite Creek). The resulting glacial deposits can be seen in the floodplains and in many areas resulted in coarse gravel-cobble glacial outwash.

Steep, unstable slopes are common in portions of the watershed and mass wasting events are common. In addition, the highly erodible sedimentary rocks contribute substantial sediment loads to the Hoback River and its tributaries during spring runoff. Additional sediment inputs result from land management practices (grazing and channel alterations) and road construction activities in the watershed. The high sediment loads result in unstable stream channels such that pool development is limited and the stream channels are dominated by a series of long runs and riffles. A lack of pool-forming large woody debris in many locations also contributes to a lack of pools. However, where large woody debris is abundant (e.g., Shoal Creek) pools are more common. Also, beaver activity enhances instream habitat complexity in some locations (e.g., portions of Granite Creek and North Fork Fisherman Creek).

Hydrology – Hoback River Watershed

Two USGS gages operated historically in the Hoback River watershed, but neither is currently in use. A gage was operated in the Lower Hoback (13019500) from 1944–1958 and another in Little Granite Creek (13019438) from 1981–1992. Neither gage provides an ideal reference for all streams in the Hoback River. The mainstem gage was operational for only a short time and does not capture the range of variability among smaller watersheds. The gage on Little Granite Creek was operational for a longer time period (though still relatively short) and that watershed is small with characteristics that differ from many streams in the watershed. With limited options available, the Little Granite Creek gage was chosen as the more representative gage for streams in the Hoback watershed (HabiTech 2009). Stream flow at the Little Granite
Creek gage is typical of snowmelt runoff streams with short periods of high (runoff) flow and a substantial portion of the annual flow as a low (base) flow (FIGURE 2). Annual peak flow occurred between May 1 and June 15 over the period of record (median date was May 28). Base flow recession occurs throughout summer with near base flow levels attained by September. Annual flow minima occurred in winter (December, January, or February [FIGURE 3]).

FIGURE 2. Flow exceedance curves for the Little Granite Creek USGS stream gage station (13019438) over the period of record (1981–1992; developed from Table 3 in HabiTech 2009).
FIGURE 3. Simulated hydrographs for wet, average, and dry water years for the reference gage (Little Granite Creek USGS stream gage station 13019438). A representative year was randomly selected from within each of three flow exceedence classes for this gage and used as a basis for generating flow estimates for Shoal Creek (wet 0–10%, average 30–70%, and dry 90–100%; HabiTech 2009).

Biology – Upland and Riparian Resources

Vegetation in the Hoback River basin is primarily alpine and sub-alpine forest types with lodgepole pine, whitebark pine, limber pine, aspen, Douglas-fir, subalpine fir, Englemann spruce, and blue spruce. The highest elevations in the watershed contain alpine moss-lichen-forb communities. Mountain big sagebrush is the dominant vegetation type in lower elevations. There are several grasses and forbs associated with the sagebrush community including: Idaho fescue, Letterman’s needlegrass, elk sedge, sulphur buckwheat, yarrow, rockcress, and lupine. Riparian habitats are predominantly willow communities with four common willow species (coyote, Booth’s, Drummond’s, and wolf). Cottonwoods are present but very sparse in this region. A common noxious weed in the watershed, particularly in riparian areas, is Canada thistle.

There were substantial changes in vegetation communities in the Greys-Hoback watershed in recent years. Whitebark pine historically dominated upper forest ecotones in the Bridger-Teton National Forest (BTNF 2009); however, much of that (up to 95 percent) has been lost due to the exotic blister rust fungus, mountain pine beetles, and effects of an altered fire regime (CH2MHill 2004). Mountain mahogany also used to be much more prevalent in the Greys-Hoback watershed but nearly all of it was lost due to the effects of an altered fire regime (CH2MHill 2004). In addition, lodgepole pine are currently suffering dramatic losses in the BTNF due to very high levels of mountain pine beetles; at least 75 percent of these trees are
currently mature and susceptible to infestation (BTNF 2009). Grazing has also impacted the Greys-Hoback watershed, especially riparian areas, through changes in plant species composition, diversity, and density and contributing to the high soil erosion (NPCC 2005).

Biology – Fish and Other Aquatic Resources

The fish community in the Hoback River basin includes two native game species, SRC and MWF (*Prosopium williamsoni*). Other native species include bluehead sucker (BHS; *Catostomus discobolus*), mountain sucker (MTS; *Catostomus platyrhynchus*), longnose dace (LND; *Rhinichthys cataractae*), speckled dace (SPD; *Rhinichthys osculus*), Pauite sculpin (PSC; *Cottus beldingi*), mottled sculpin (MSC; *Cottus Bairdi*), and Utah sucker (UTS; *Catostomus ardens*). Introduced brook trout (BKT; *Salvelinus fontinalis*) are also found in the watershed. The most abundant species captured during WGFD sampling efforts in Shoal Creek is SRC, but MWF, PSC, and MSC also occur there. There are also several amphibians associated with riparian habitat in the watershed, all of which are listed as “species of greatest conservation need” (WGFD 2005b). These include the blotched tiger salamander (*Ambystoma mavortium melanostictum*), boreal toad (*Anaxyrus boreas boreas*), great basin spadefoot (*Spea intermontana*), American bullfrog (*Lithobates catesbeianus*), northern leopard frog (*Lithobates pipiens*), boreal chorus frog (*Pseudocris maculata*), and Columbia spotted frog (*Rana luteiventris*).

In the past, the focus of fishery management in the Hoback River basin was to enhance angling opportunities by stocking native and non-native trout. The current management objective is to maintain a wild population of SRC. Brook trout were stocked initially in 1933 and sporadically for several years after that. SRC stocking began in 1939 and continued annually through 2005. In addition to stocking the mainstem Hoback River, stocking of BKT and SRC also occurred in several tributaries (Cliff, Dell, Fisherman, Granite, Shoal, and Willow creeks). Bonneville cutthroat trout (*Oncorhynchus clarki utah*) were stocked into Turquoise and Shoal Lakes and this is the only other known introduction in the drainage (Rhea and Gipson 2007). From 1999 to 2005 the number of SRC stocked in the Hoback River was reduced annually. Rhea and Gipson (2007) observed that stocking did not enhance the fishery and that reduced stocking efforts actually enhanced the wild SRC population. As a consequence, the stocking program in the Hoback River was eliminated in 2005.

Habitat preferences of target species, and their life stages, is an important component of instream flow studies since flow recommendations are based on maintaining sufficient habitat for target species to carry out life history functions (e.g., growth and reproduction). These habitat preferences are used to develop habitat suitability curves that are used in PHABSIM and River 2D models (described below). Most research on habitat use has focused on YSC (perhaps including SRC in some cases since the two are not always differentiated), but since SRC are genetically very similar, it is likely that they behave similarly in regards to habitat preferences and reproduction. Dey and Annear (2006) found that adult YSC in Trout Creek (tributary of the North Fork Shoshone River) were most commonly found in areas with depths of 1.15–1.60 ft and average column velocities of 0.36–1.91 ft/s. For juvenile YSC, these ranges were slightly different with depths of 1.0–1.5 ft and average column velocities of 0.38–1.65 ft/s (Dey and Annear 2006). Growth of adult and juvenile SRC is most important during the relatively short summer and early fall periods. Habitat for these life stages is also critical during winter to allow over-winter survival.
In addition to adults and juveniles, two other life stages evaluated for habitat availability are related to reproduction, spawning adults and fry. YSC generally spawn between March and July depending on local hydrology and water temperatures (believed to be triggered around 41F; Kiefling 1978, Varley and Gresswell 1988, De Rito 2005). The stream gradient observed in spawning areas is usually less than 3% (Varley and Gresswell 1988), but non-migratory fluvial populations have been documented in streams with a mean gradient of 6% (Meyer et al. 2003). Spawning activity for YSC in Wyoming has been observed during May and June in watersheds within the Big Horn River Basin in north central Wyoming (Greybull River, Shoshone River and their tributaries; Kent 1984, Dey and Annear 2002, Dey and Annear 2006). Elevation has an influence on the timing of spawning in YSC with stream segments located at higher elevations more likely to remain colder and cause both spawning and egg incubation to occur later in the summer. Dey and Annear (2003) found that spawning occurred into July in streams above approximately 8,000 ft in elevation (in the Greybull watershed) and extended recommendations for spawning flows through July 15 in such high elevation sites. The upper portion of the Shoal Creek watershed is above 8,000 ft in elevation and the instream flow segment is near this elevation so it is possible that spawning may extend into July in parts of the segment, but most activity likely occurs in June. Dey and Annear (2006) were unable to observe statistically acceptable numbers of spawning YSC (n=4) to develop habitat suitability curves for spawning YSC in Wyoming and did not search for fry. Spawning YSC habitat suitability data from a Snake River tributary in Idaho are presented in Thurow and King (1994); these researchers found that velocity preference was highest from 1.12 to 1.72 ft/sec and depth preference highest from 0.52 to 0.82 ft. Fry habitat data for Colorado River cutthroat in Wyoming (Bozek and Rahel 1992) were used in the absence of any data available for YSC or SRC (the species are in the same genus and presumably use similar habitats); the velocity range most often used by those fry in that study was less than 0.1 ft/sec and the depth range was 0.36 to 0.49 ft. Fry are most likely to be present during July, August, and September in the Hoback River watershed.

Instream Flow Segment

One stream segment is proposed for an instream flow water right filing in Shoal Creek (TABLE 1; FIGURE 4; FIGURE 5). The boundaries for the segment were identified after considering land ownership, hydrology, and stream channel characteristics. The segment runs from an impassable (to fish) waterfall on the creek down to the confluence with west Shoal Creek where the geomorphology of the stream changes in response to the substantially higher flow volume of the combined creeks. Within the stream segment, instream flow recommendations were developed for individual life stages of SRC (fry, spawning, juvenile, and adult). Securing instream flow water rights on this stream segment will help ensure the future of SRC and other important fish species in Wyoming by protecting existing base flow conditions in priority against potential but presently unidentified future consumptive and diversionary demands.

Instream flow segments are nearly always located on public land where unappropriated water remains, and the public has access to the fishery. However, in some instances landowners that are nearby or adjacent to a proposed segment are given the opportunity to request that the state to extend an instream flow segment on the portion or portions of those streams crossing their property. Any such requests must be made in writing to the department and are on a voluntary basis. Regardless of whether instream flow segments are placed entirely on public
lands or include private segments, the instream flow water rights are junior to existing water rights holders in the stream and will not affect their lawful use of the water in any way.

The instream flow segment selected on Shoal Creek is located entirely on public land. Because there were no nearby private property sections, there was no need to contact individual landowners and assess interest in extending the proposed segment through private lands. However, interested landowners may contact the WGFD to evaluate opportunities for including potential segments through their property under the present proposal. Separate, new studies would be needed should downstream private landowners decide to seek an instream flow right through their property in the future. The department has no plans to conduct such studies at the present time.

TABLE 1. Location and length of the proposed instream flow segment on Shoal Creek. Coordinates and elevations are provided for the downstream end of the segment and are UTM Zone 12, NAD83 datum.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Description</th>
<th>Length (mi)</th>
<th>Easting</th>
<th>Northing</th>
<th>Elevation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoal</td>
<td>Above confluence of West Shoal Creek upstream to Shoal Creek Falls</td>
<td>6.4</td>
<td>547591</td>
<td>4792764</td>
<td>6,890</td>
</tr>
</tbody>
</table>

FIGURE 4. Shoal Creek study site at a discharge of 18 cfs.
FIGURE 5. Data were collected to evaluate fish habitat at one potential instream flow segment on Shoal Creek.

Methods

Overall Approach for Developing Instream Flow Recommendations

A combination of several different methods was used to develop instream flow recommendations to maintain or improve the fishery in the Hoback River watershed. When possible, data were collected to run each of several habitat models for a study site (including the PHABSIM or River 2D habitat model, the Habitat Retention model, and the Habitat Quality Index model); however, the ecological characteristics and issues at a study site were sometimes unique and not necessarily appropriate for scaling up to the entire segment. As a consequence, though data may have been collected for all models at each site, the models used for developing a recommendation were selected based on their appropriateness for the characteristics and flow needs at each site. These models provide an evaluation of physical habitat for trout, thus flow recommendations based on these analyses were chosen to maintain sufficient habitat, which is defined as water depth, velocity, and cover necessary for each fish species and life stage of interest. Recommended flows were designed to protect habitat during portions of the year that are most critical to a given species and life stage. Recommendations were also evaluated relative to natural flow conditions, but because none of the instream flow segments had stream gage data, estimates of stream flow were developed for these comparisons.

One limitation of these flow recommendations is an underlying assumption that the physical habitat conditions and geomorphic processes in the stream are static. The analyses presented in this report indicate which flows provide suitable hydraulic habitat within this existing channel form, but the channel form may change over time. Channel form is a direct
result of interactions among eight variables: discharge, sediment supply, sediment size, channel width, depth, velocity, slope, and roughness of channel materials (Leopold et al. 1964; Heede 1992; Leopold 1994). For many alluvial streams in their natural state, the channel exists in a state of dynamic equilibrium in which the sediment load is balanced with the stream’s transport capacity over time (Bovee et al. 1998). When a stream is not in dynamic equilibrium, as associated with a lack of important high flow conditions, fine sediment buildup can occur causing, for example, a reduction in spawning habitat suitability. These higher, channel-maintenance flows are critical for maintaining long-term habitat availability for stream fish. These flows sustain the river channel conditions by permitting a connection to the floodplain, preventing buildup of fine sediments, and facilitating a variety of other important ecological processes (Carling 1995, Annear et al. 2004, Locke et al. 2008). Recommendations for flows sufficient to allow channel maintenance and provide a more complete flow pattern that fully maintains fishery habitat are presented in Appendix A. Should opportunities arise in the future to secure instream flow water rights for long-term maintenance of fluvial geomorphic processes in the Hoback River, Appendix A may provide a valuable reference.

Data Collection and Analysis

One study site (approximately 600 ft long) was selected to represent the Shoal Creek instream flow segment. The bankfull width in this reach was approximately 25 ft so the study site length was approximately 24 channel widths. This is longer than that recommended by Bovee (1982; 10-14 times the channel width), but the modeled habitat was not contiguous throughout the entire study site. The downstream end of the study site was approximately 5.6 miles upstream from the confluence with Hoback River. The complexity of this site is representative of the range of habitat conditions available in the instream flow segment. All data collection was conducted in this study site and extrapolated to the entire proposed instream flow segment. The data were analyzed to determine the availability of suitable habitat for all life stages of SRC at various flow conditions.

Hydrology – Shoal Creek Study Site

Development of flow recommendations for an instream flow study segment requires an understanding of local stream flow conditions. In many cases stream gage data are not available within the segment and the data must be estimated from a regional reference gage. That is the case for Shoal Creek since there were no localized stream gage data available. The reference gage used for all instream flow segments in the Hoback River watershed (HabiTech 2009) was the Little Granite Creek USGS gage (13019438) with data available from late 1981 through 1992. Similar to previous efforts (HabiTech 2009), mean annual flow (also called “average daily flow” or ADF), annual flow duration, monthly flow duration, and flood frequency were estimated for the proposed instream flow segments. HabiTech (2009) calculated average daily flows from the contributing basin area models of Miselis et al. (1999) and Lowham (1988) and determined that neither accurately predicted flows at the reference gage. Alternative models using channel geometry (bankfull width) by Lowham (1988) and Miselis et al. (1999) yielded more accurate estimates of the reference gage with the former being the best. The bankfull width at the downstream end of each instream flow reach was used. A dimensional analysis approach was used to develop both annual and monthly flow duration information. Dimensionless duration tables were created for the reference gage by dividing each duration class by the mean annual flow (i.e., \(Q_w / Q_{AA} \)). The dimensionless flow value for each annual and monthly
percentile was then multiplied by the estimated average annual flow for each instream flow segment to develop flow duration values for that segment. A similar approach was used to develop the flood frequency series. For further details, see HabiTech (2009).

Average daily flow estimates were used in applying the Habitat Quality Index and Habitat Retention models (described below). The 1.5-year return interval on the flood frequency series was used to estimate bankfull flow (Rosgen 1996) for use in the Habitat Retention model and for developing channel maintenance flow recommendations (Appendix A). Channel maintenance calculations also used the 25-year peak flow estimate from the flood frequency analysis. The monthly flow duration series was used in developing winter flow recommendations. Throughout this report, the term “exceedance” is used, as in “20% exceedance flow.” The 20% exceedance flow refers to the flow level that would be exceeded 20% of the time or that would be available approximately one year out of every five consecutive years. Flow measurements collected by WGFD during instream flow habitat studies were used to help validate the models and enhance the accuracy of the hydrological estimates.

Biology – Fish Habitat

The availability of fish habitat is evaluated using several different habitat models for each study site. “Habitat” in this report refers the combination of physical conditions (depth, velocity, substrate, and cover) for a given area. These physical conditions vary with discharge. It is important to note that these variables do not represent a complete account of all variables that comprise trout habitat. Habitat for trout also includes environmental elements such as water temperature, dissolved oxygen, distribution and abundance of prey and competitor species, movement timing and extent, and other variables. These other variables are important, but are not included in models used for these analyses because they do not fluctuate with changes in the quantity of flow as predictably as the physical habitat parameters and thus were assumed to be constant over the range of flows analyzed. Interpretation of model results based on these physical habitat parameters assumes that this subset of trout habitat is important and provides a reasonable estimate of habitat availability at each flow and ability of trout to persist on a short-term basis.

Physical Habitat Simulation Model

The Physical Habitat Simulation (PHABSIM) approach was used to estimate flows that will maintain habitat for individual life stages during critical time periods. The PHABSIM approach uses computer models to calculate a relative suitability index for target species like SRC based on depth, velocity, and substrate or cover (Bovee et al. 1998). Calculations are repeated at user-specified discharges to develop a relationship between suitable area (termed “weighted useable area” or WUA) and discharge. Model calibration data are collected across the stream at each of several locations (transects) and involve measuring depth and velocity at multiple locations (cells) along each transect. Measurements are repeated at three or more different discharge levels. By using depths and velocities measured at one flow level, the user calibrates a PHABSIM model to accurately predict the depths and velocities measured at the other discharge levels (Bovee and Milhous 1978, Milhous et al. 1984, Milhous et al. 1989).

Following calibration, the user simulates depths and velocities over a range of user-specified discharges. These predicted depths and velocities, along with substrate or cover information, are compared to habitat suitability curves (HSC). The relative value to fish of predicted depths, velocities, substrates, and cover elements are defined by HSCs which range
between “0” (no suitability) and “1” (maximum suitability). At any particular discharge, a combined suitability for every cell is generated. That suitability is multiplied by the surface area of the cell and summed across all cells to yield weighted useable area for the discharge level. Results are often depicted by graphing WUA for a particular fish life stage versus a range of simulated discharges (Bovee et al. 1998). Relationships are best interpreted as a relative suitability index rather than a definitive prediction of physical area (Payne 2003).

Habitat Retention Model

The Habitat Retention Method (Nehring 1979, Annear and Conder 1984) was used to identify the flow that maintains specified hydraulic criteria (TABLE 2) in riffles. Maintaining depth, velocity, and wetted perimeter criteria in riffles is based on an assumption that other habitat types like runs or pools remain viable for fish when adequate flows are provided in shallow riffles that serve as hydraulic controls (Nehring 1979). Flow recommendations derived from the Habitat Retention Method describe instream flows needed to maintain fish passage between habitat types and benthic invertebrate survival at any time of year when the recommended flow is naturally available. The flow identified by the Habitat Retention Method is important year round, except when higher instream flows are required to meet other fishery management purposes.

Simulation tools and calibration techniques used for hydraulic simulation in PHABSIM are also used with the Habitat Retention approach. The difference is that Habitat Retention does not translate depth and velocity information into conclusions about incremental changes in the amount of physical space suitable for trout life stages. The Habitat Retention method focuses on identifying riffle hydraulic characteristics that maintain fish passage and invertebrate production. The AVPERM model within the PHABSIM methodology is used to simulate cross section depth, wetted perimeter, and velocity for a range of flows. The flow that maintains 2 out of 3 criteria (TABLE 2) for all three transects is then identified; however, because of the critical importance of depth for maintaining fish passage, the 0.2 ft threshold must be one of the criteria met for each transect.

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Depth (ft)</td>
<td>0.20</td>
</tr>
<tr>
<td>Mean Velocity (ft/s)</td>
<td>1.00</td>
</tr>
<tr>
<td>Wetted Perimetera (%)</td>
<td>50</td>
</tr>
</tbody>
</table>

a - Percent of bankfull wetted perimeter

Habitat Quality Index Model

The Habitat Quality Index (HQI; Binns and Eiserman 1979, Binns 1982) was used to determine relative trout habitat suitability or production potential over a range of late summer (July through September) flow conditions. Most of the annual trout production in Wyoming streams occurs during the late summer, following peak runoff, when longer days and warmer
water temperatures facilitate growth. The HQI was developed by the WGFD to provide an index of relative habitat suitability, which is correlated to trout production as a function of nine biological, chemical, and physical trout habitat attributes. Each attribute is assigned a rating from 0 to 4 with higher ratings representing better trout habitat features. Attribute ratings are combined in the model with results expressed in trout Habitat Units (HU’s), where one HU is defined as the amount of habitat that will support about 1 pound of trout, though the precise relationship can vary between streams. HQI results were used to identify the flow between July 1 and September 30 needed to maintain existing levels of adult and juvenile Yellowstone cutthroat trout production (habitat quality) and are based on an assumption that flow needs for other life stages are adequate at all other times of year. The model also assumes that water quality is not a limiting factor.

In the HQI analysis, habitat attributes measured at various flow events are assumed to be typical of late summer flow conditions. For example, stream widths measured in June under high flow conditions are considered an estimate of stream width that would occur if that flow level were a base flow occurring in September. Under this assumption, HU estimates are extrapolated through a range of potential late summer flows (Conder and Annear 1987). Some attribute ratings were mathematically derived to establish the relationship between discharge and trout habitat at discharges other than those measured. In calculating Habitat Units over a range of discharges, temperature, nitrate concentration, invertebrate numbers, and eroding banks were held constant.

Article 10, Section d of the Wyoming Instream Flow statute states that waters used for providing instream flows “shall be the minimum flow necessary to maintain or improve existing fisheries.” The HQI is used to identify a flow to maintain the existing fishery in the following manner: the number of habitat units that occur under normal July through September flow conditions is quantified and then the flow that maintains that level of habitat is identified. The August 50% monthly exceedance flow is often used as a reference of normal late summer flow levels and is consistent with how the HQI was developed (Binns and Eiserman 1979). This flow is not the minimum flow needed to keep the target fish species alive, but is the least amount of water needed to realize the statutorily authorized beneficial use of maintaining the existing fishery.

Natural Winter Flow

The three habitat modeling approaches described above are not well suited to determine flow requirements during ice-prone times of year (October through early April). These methods were all developed for and apply primarily to open-water periods. Ice development during winter months can change the hydraulic properties of water flowing through some stream channels and compromise the utility of models developed for open water conditions. The complexities of variable icing patterns make direct modeling of winter trout habitat over a range of flows difficult if not impossible. For example, frazil and surface ice may form and break up on multiple occasions during the winter over widely ranging spatial and temporal scales. Even cases that can be modeled, for example a stable ice cap over a simple pool, may not yield a result worthy of the considerable time and expense necessary to calibrate an ice model. There are no widely accepted aquatic habitat models for quantifying instream flow needs for fish in under-ice conditions (Annear et al. 2004). As a result, a different approach was used to develop recommendations for winter flows.
For Wyoming Rocky Mountain headwater streams, a conservative approach is needed when addressing flow requirements during harsh winter habitat conditions. The scientific literature indicates that the stressful winter conditions for fish would become more limiting if winter water depletions were to occur. Even relatively minor flow reduction at this time of year can change the frequency and severity of ice formation, force trout to move more frequently, affect distribution and retention of trout, and reduce the holding capacity of the few large pools often harboring a substantial proportion of the total trout population (Lindstrom and Hubert 2004). Hubert et al. (1997) observed that poor gage records often associated with the winter season requires use of a conservative value. The 50% monthly exceedance does not provide an appropriate estimate of naturally occurring winter flow. It is more appropriate from the standpoint of maintaining fisheries to recommend the higher flows of a 20% monthly exceedance. Such an approach assures that even in cases where flow availability is prone to being underestimated due to poor gage records or other estimation errors, flow approximating the natural winter condition will be recommended. This approach has been used for many recent instream flow recommendations (e.g., Dey and Annear 2006, Robertson and Dey 2008) and consequently was adopted for the instream flow segment on Shoal Creek.

Flows for Other Important Riverine Components

Wyoming statute 41-3-1001-1014 declares that instream flows may be appropriated for maintaining or improving fisheries, which has been interpreted by Wyoming state engineers to include only the hydrologic and biological riverine components. The law does not specifically provide that other widely accepted components of a fishery such as geomorphology, water quality, or connectivity may serve as a basis for quantifying flow regime needs for fisheries. As a result, the instream flow recommendations generated in this report, which focus on results of fish habitat models, provide a good means of ensuring only physical habitat availability for SRC in the Hoback River watershed. Because all five of the riverine components are interconnected and maintain natural processes that support the form and function of natural stream fisheries, a flow regime that does not provide sufficient flow at appropriate times of year to maintain the necessary geomorphology, water quality, or connectivity conditions will likely not achieve the statutorily authorized beneficial use of maintaining the existing fishery in perpetuity. Although current interpretation of the law does not permit using these other components to quantify an instream flow appropriation, the current condition of each is described and presented in this report.

Instream Flow Recommendations

Instream flow recommendations for Shoal Creek were developed for four seasonal periods, which are based on SRC biology and Hoback River hydrology (TABLE 3; FIGURE 6). Over-winter survival of adult and juvenile SRC is addressed with natural winter flow from October 1 through March 31. The hydrograph indicates that, on average, relatively low base flow conditions in winter persist through March 31 during both the highest and lowest flows recorded in the Hoback River. Habitat for juvenile and adult SRC is evaluated using PHABSIM habitat modeling for the early spring connectivity period, which occurs prior to spawning during the rising limb of spring runoff from April 1 to April 30. Spawning and incubation habitat for SRC is evaluated with habitat modeling results for the spawning lifestage using PHABSIM for the period May 1–June 30. Summer habitat for growth and production of fry and juvenile SRC is evaluated with Habitat Quality Index results (adult SRC habitat) and modeling results from PHABSIM for the period July 1–September 30. The Hoback River hydrograph indicates that...
during low water years, there is little variation between flows in the early and late parts of this seasonal period (FIGURE 6). When two or more methods could be used for a recommendation, the method chosen is the one that yields the higher flow needed for a particular fishery maintenance purpose. For example, the Habitat Retention approach provides a base flow which is usually too low to maintain sufficient habitat for all life stages and is not used for instream flow recommendations when other aspects of fishery maintenance require higher flows. When habitat is maximized at flows greater than the natural 20% exceedence flow, the latter is used as a maximum recommended instream flow. Channel maintenance flows perform their function during runoff in April, May, June, and July (Appendix A) but are not used in the instream flow water right application as described in the Introduction.
TABLE 3. Snake River cutthroat trout life stages and seasons considered in developing instream flow recommendations. Numbers indicate the method used for each combination of season and life stage, and grey shading indicates the primary data used for flow recommendations in each season.

<table>
<thead>
<tr>
<th>Life stage and Fishery Function</th>
<th>Over-Winter Survival Oct 1 – Mar 31</th>
<th>Early Spring Connectivity Apr 1 – Apr 30</th>
<th>Spring Spawning May 1 – Jun 30</th>
<th>Summer Production Jul 1 – Sep 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival and movement of all life stages</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Spawning and Incubation Habitat</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fry Habitat</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Juvenile Habitat</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Adult Habitat</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Adult Growth</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>All life stages habitat*</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1=Natural winter flow or Habitat Retention, whichever is greater, 2=Habitat Retention, 3=Physical Habitat Simulation, 4=Habitat Quality Index, 5=Channel Maintenance.
* Channel maintenance flow recommendations are presented in Appendix A.
FIGURE 6. Lowest and highest daily historical discharge values in the Hoback River and critical time periods for YSC. Data is from USGS gage 13019500 on the Hoback River (1944–1958).

Results and Discussion

Hydrology – Shoal Creek Study Site

Since the USGS reference gage used for hydrology estimates (Little Granite Creek gage) was not functional in 2009 there was no way to accurately determine whether the study period occurred during a low, moderate or high water year. To generate a rough comparison, 2009 data from a gage in the Snake River just upstream from Alpine, WY (site 13022500; this is the nearest gage downstream from the Hoback watershed) was compared to the period of record for the Little Granite Creek reference gage (1981-1992). The mean daily discharge that occurred at the Alpine gage during July, August, and September in 2009 (5,882 cfs) was higher than 8 of the 12 years in the reference period, and higher than many recent years. This suggests that the study period occurred in a higher than average flow period, but not in an extreme wet cycle.

Mean annual flow was estimated for the Shoal Creek instream flow segment in addition to select flood frequency and monthly flow duration estimates (TABLE 4; TABLE 5). HabiTech (2009) noted that WGFD discharge measurements collected in the segment were within expectations of their estimates and concluded that their approach yielded reasonable results. Due to the higher than average flow conditions in 2009 compared with the reference period, the four discharges measured by WGFD in 2009 (TABLE 6) were greater than the estimated 50% monthly exceedance flows.

In addition to monthly exceedence values as an indicator of flow conditions in the segment, HabiTech (2009) also produced daily flow estimates for three years (the period of record was first divided to represent wet, average, and dry conditions, then a representative year randomly selected from each group). Reference gage data from the randomly selected three
years were used to prepare daily flow estimates for the Shoal Creek segment (FIGURE 7). These hydrographs provide an indication of the range of discharge conditions that may occur in the instream flow segment; however, in reality there is considerable variation in the timing and pattern of flow within a given year and between different years that is not fully described by three individual hydrographs simulated by HabiTech (2009). As a consequence these should be viewed only as a general template of runoff patterns; flow recommendations from the analyses will not vary as a function of water year characteristics.

TABLE 4. Estimated hydrologic characteristics for the Shoal Creek instream flow segment (HabiTech 2009).

<table>
<thead>
<tr>
<th>Flow Parameter</th>
<th>Estimated Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Annual</td>
<td>28</td>
</tr>
<tr>
<td>1.5-year peak</td>
<td>199</td>
</tr>
<tr>
<td>25-year peak</td>
<td>984</td>
</tr>
</tbody>
</table>

TABLE 5. Estimated monthly exceedence values for the Shoal Creek instream flow segment (HabiTech 2009).

<table>
<thead>
<tr>
<th>Month</th>
<th>50% Exceedence (cfs)</th>
<th>20% Exceedence (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>October</td>
<td>6.9</td>
<td>11</td>
</tr>
<tr>
<td>November</td>
<td>6.3</td>
<td>8.8</td>
</tr>
<tr>
<td>December</td>
<td>5.3</td>
<td>7.2</td>
</tr>
<tr>
<td>January</td>
<td>4.7</td>
<td>6.2</td>
</tr>
<tr>
<td>February</td>
<td>4.8</td>
<td>6.0</td>
</tr>
<tr>
<td>March</td>
<td>6.3</td>
<td>8.5</td>
</tr>
<tr>
<td>April</td>
<td>27</td>
<td>54</td>
</tr>
<tr>
<td>May</td>
<td>83</td>
<td>160</td>
</tr>
<tr>
<td>June</td>
<td>86</td>
<td>179</td>
</tr>
<tr>
<td>July</td>
<td>27</td>
<td>47</td>
</tr>
<tr>
<td>August</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>September</td>
<td>8.6</td>
<td>13</td>
</tr>
</tbody>
</table>

Biology – Fish Habitat

Physical Habitat Simulation Model

The PHABSIM model was used to estimate habitat for all life stages of SRC in the Shoal Creek study site. Simulations were conducted through the study site using a calibrated PHABSIM model over the flow range 1 to 100 cfs. The model was run at each flow increment using data from all six transects combined (there were three pairs, each including a hydraulic control (riffle) and an upstream pool tail-out). Each transect was weighted according to the proportion of that habitat feature in the study reach. When the calibrated model was run for a given species / life stage at a given discharge, the resulting weighted usable area (WUA) was the final output used for interpretation.

A review of change in WUA over the range of flows reveals discharge values that provide the maximum amount of physical habitat at each flow. For SRC fry, the peak in habitat suitability occurs at 15 cfs (FIGURE 8). At this discharge, the flow remains within the active
channel (well below bankfull flow) and all suitable habitat for fry occurs along the margins of the channel. The model also indicated that spawning habitat is maximized at 45 cfs (FIGURE 8). The peak in habitat suitability for juvenile SRC also occurred at 30 cfs and suitable habitat for adult SRC habitat is most abundant at 25 cfs (FIGURE 9).

FIGURE 8. Relationship between weighted usable area and discharge for SRC fry and spawning life stages in the Shoal Creek study site.
FIGURE 9. Relationship between weighted usable area and discharge for SRC juvenile and adult life stages in the Shoal Creek study site.

Habitat Retention Model

The habitat retention model was used to evaluate hydraulic characteristics that affect the survival and movement of all life stages over a range of discharges in the Shoal Creek instream flow segment. This model addresses a portion of the connectivity riverine component as well as the biology riverine component. With this model the hydraulic characteristics of at least three riffle transects are estimated and evaluated to determine the discharge that maintains fish passage (connectivity) between habitat types and provides sufficient depth, velocity, and wetted area to ensure survival of fish prey items (benthic invertebrates).

The three hydraulic variables evaluated with this model are mean velocity, mean depth, and the wetted perimeter (as a percentage of bankfull width). The lowest discharge at which two of the three criteria are maintained at all three riffles is the recommended discharge to maintain habitat throughout the instream flow segment (TABLE 7). All three riffle cross-sections used for this analysis had similar hydraulic attributes. Bankfull discharge is approximately 500 cfs in this reach and at that flow, riffles 1, 2, and 3 result in a stream width of 50.5, 32.6 ft, and 46.9 ft. Because of differences in channel characteristics among the three riffles, there are differences in the discharge values that yield the required habitat characteristics. These riffles have relatively steep banks and wetted perimeter remains greater than 50% of the bankfull width down to very low discharge in each. Mean water velocity is predicted to decline to approximately 1.0 ft/sec when discharge declines to 5 cfs on riffle 3 but the same velocity occurs at 15 cfs on riffle 1. Mean depth was similarly variable among riffles; the threshold value for this variable (0.01 * mean bankfull width) was crossed at approximately 30 cfs on riffle 1, 6.0 cfs on riffle 2, and 20 cfs on riffle 3.
The final result of this analysis indicates that a discharge of 15 cfs maintains two of the three hydraulic criteria at all three riffles. This flow will maintain base level conditions for fish passage and to provide habitat for benthic invertebrate populations on these riffles.

Habitat Quality Index Model

The HQI model data was important in evaluating late summer habitat production potential for this instream flow segment. The 50% exceedence flow value for August and 20% exceedence flow value for September (14 cfs and 13 cfs, respectively; TABLE 5) are used as estimates of late summer flow levels for evaluating the results of this model. At each of these flows, the stream provides 21.3 Habitat Units (FIGURE 10); the lowest flow that would provide that amount of habitat is 13 cfs. Decreasing discharge to 12 cfs or lower would decrease the number of HUs by at least 14%. Typically, as flow declines in streams, water temperature in late summer tends to increase. We held maximum summer temperature constant when running this model but know that increased temperature at lower flows would decrease Habitat Units by more than 14%. Therefore, the instream flow recommendation to maintain adult YSC habitat during the late summer period is 13 cfs.
TABLE 7. Estimated hydraulic conditions for three riffles over a range of modeled discharges in the Shoal Creek instream flow segment. Bold indicates that the hydraulic criterion was met for an individual attribute; the grayed-out discharge value meets the selection criteria. Bankfull width for transect 1 = 50.5, for transect 2 = 32.6, and for transect 3 = 46.9.

<table>
<thead>
<tr>
<th>Rifflle Transect Number</th>
<th>Discharge (cfs)</th>
<th>Mean Velocity (ft/sec)</th>
<th>Mean Depth (ft)</th>
<th>Wetted Perimeter (% of bankfull)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>475*</td>
<td>7.07</td>
<td>1.32</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.66</td>
<td>0.80</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>51.8</td>
<td>1.83</td>
<td>0.62</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.38</td>
<td>0.48</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.14</td>
<td>0.39</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.02</td>
<td>0.32</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td>0.96</td>
<td>0.29</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>0.83</td>
<td>0.23</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>0.77</td>
<td>0.21</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.67</td>
<td>0.23</td>
<td>0.38</td>
</tr>
<tr>
<td>2</td>
<td>500*</td>
<td>11.33</td>
<td>1.12</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>3.87</td>
<td>0.79</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>51.8</td>
<td>2.72</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.93</td>
<td>0.57</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.51</td>
<td>0.50</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td>1.13</td>
<td>0.42</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.06</td>
<td>0.40</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.75</td>
<td>0.32</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>0.68</td>
<td>0.30</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.53</td>
<td>0.24</td>
<td>0.58</td>
</tr>
<tr>
<td>3</td>
<td>500*</td>
<td>5.39</td>
<td>1.48</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>2.84</td>
<td>0.82</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>51.8</td>
<td>2.20</td>
<td>0.76</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.74</td>
<td>0.57</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.49</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.36</td>
<td>0.38</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>1.16</td>
<td>0.27</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>1.13</td>
<td>0.25</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>1.05</td>
<td>0.23</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.95</td>
<td>0.17</td>
<td>0.35</td>
</tr>
</tbody>
</table>

* = Bankfull flow
FIGURE 10. Habitat Quality Index vs. discharge in the Shoal Creek instream flow segment. X-axis values are not to scale; the values were chosen to indicate where changes in Habitat Units occur. The recommended flow is indicated by the light shaded bar.

Flows for Other Important Riverine Components

Geomorphology relates to the shape of a stream channel and includes the high flows that maintain channel form and function. An effective instream flow regime should include these higher flows that maintain the channel form and habitat conditions over the long term. In addition, such flows maintain diverse riparian and floodplain vegetation and provide suitable conditions for the community of animals that use these habitats. Channel maintenance flow recommendations as described in Appendix A would allow these natural stream channel processes to occur and promote a healthy riparian assemblage of plants and animals (Stromberg and Patten 1990, Rood et al. 1995, Mahoney and Rood 1998) and is consistent with the scientifically accepted definition of fisheries maintenance.

Water quality conditions in the Hoback River watershed are generally excellent in and upstream of the instream flow segments at most times of year and in most years. There are some issues with turbidity, particularly in portions of the watershed that have unstable slopes, but water temperature, and various organic and inorganic constituents are believed to be at normal (historic) levels and relatively little anthropogenic pollution is apparent. Flow recommendations in this report are expected to maintain water quality within natural bounds and it is assumed that existing water quality features will remain within existing limits of natural variability. If drastic long-term changes to watershed form or function occur, then flow recommendations might need to be reviewed.
Connectivity in a stream includes the ability of fish to move up and downstream (a factor incorporated into the habitat modeling efforts), but also includes the connection of the stream to its floodplain and the groundwater. All of these connectivity factors also have a temporal relationship (e.g., upstream migration of fish and inundation of the floodplain are most important during certain seasons). In the Hoback watershed, there are some barriers to upstream migration (i.e., road culverts), but connectivity has been largely un-impacted in this watershed since much of it includes land managed by the US Forest Service. Maintaining needed flows on a continuous basis throughout the year will address the connectivity element that relates to temporal characteristics.

Instream Flow Recommendations

The instream flow recommendations to maintain short-term habitat for SRC in Shoal Creek (TABLE 8; FIGURE 11) assume that basic geomorphic characteristics of the stream do not change. Four seasonal time periods were identified for instream flow recommendations. These distinct seasons include winter fish survival (October 1–March 31), an early spring period (April 1–30) that is important for longitudinal habitat connectivity in anticipation of SRC spawning, the spring SRC spawning period (May 1–June 30), and the summer months that facilitate trout production potential (July 1–September 30).

Winter flow recommendations were based on a combination of Habitat Retention results and the lowest 20% monthly exceedence value during the winter period for each segment. Early spring recommendations were based on adult and juvenile habitat requirements (determined using the PHABSIM model). Recommendations for the spring spawning period were based on peak SRC spawning habitat suitability determined using the PHABSIM model. Summer flow recommendations were based on habitat requirements to maintain fry habitat (PHABSIM results) as well as adult and juvenile trout production (HQI results). In a few cases, habitat models indicated that most favorable conditions were greatest for target species / life stages at discharges that are higher than what naturally occurs in that segment. In those instances a different model result was used, or as a last resort, the 20% exceedence flow (the lowest monthly value estimated for the given time period) was recommended.

The recommendations for specific seasonal fishery needs for the Shoal Creek instream flow segment are:

- Natural winter flows of up to 6.0 cfs are recommended for October 1–March 31 to maintain over-winter survival of all life stages of SRC at existing levels. This is the lowest estimated value for the 20% monthly exceedence discharge for any month during that time period (the range is 6.0–11 cfs). Habitat Retention results suggest that higher flow (≥15 cfs) would provide better habitat conditions in riffles in this reach, but that discharge appears to be rare during winter months in this stream.

- During the early spring period (April 1–30) natural flow up to 30 cfs is recommended, based on PHABSIM results, to maintain existing SRC juvenile and adult habitat and longitudinal connectivity within the instream flow segment. Connectivity between habitats is particularly important during this time period as SRC move to spawning areas and prepare to spawn.

- The SRC spawning period (May 1–June 30) recommendation is for natural flow up to 45 cfs based on maximum spawning habitat availability for SRC.
(PHABSIM results). This level of flow will maintain existing habitat for this life history need.

- The summer (July 1–September 30) recommendation is 15 cfs based on habitat retention results to maintain fish passage between habitat types and benthic invertebrate survival during this critical summer period.

TABLE 8. Flow recommendations (cfs) for the proposed instream flow segment in Shoal Creek.

<table>
<thead>
<tr>
<th>Study Segment</th>
<th>Winter Survival Oct 1 – Mar 31</th>
<th>Early Spring Connectivity Apr 1 – Apr 30*</th>
<th>Spring Spawning May 1 – Jun 30*</th>
<th>Summer Production Jul 1 – Sep 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoal</td>
<td>6.0</td>
<td>30</td>
<td>45</td>
<td>15</td>
</tr>
</tbody>
</table>

* Channel maintenance flow recommendations for the spring runoff period are defined in Appendix A.

![Graph of recommended instream flows](image)

FIGURE 11. Recommended instream flows in the proposed segment (when available) relative to wet, dry, and average flow years.

Summary

Shoal Creek provides important SRC habitat for ensuring the long-term persistence of the species in the Hoback River drainage and throughout Wyoming. This population is managed as a wild SRC fishery within the recreationally important Hoback River watershed. An 8-mile portion of Shoal Creek, including the entire 6.4-mile length of the proposed instream flow segment, was also granted status as a wild river under the Wild and Scenic Rivers Act (16 U.S.C. 1271 et seq.) in 2009. If approved by the State Engineer, the proposed instream flow water right
filing in Shoal Creek will maintain existing base flow conditions when they are naturally available against presently unknown future out-of-channel uses up to the limit of recommended water rights for each segment described in this report. Approximately 6.4 miles of stream habitat will be directly maintained if these instream flow applications advance to permit status. Existing (senior) water rights will be unaffected if the proposed water rights are approved because the proposed instream flow rights will have a current day (junior) priority date and water for all senior water rights would be honored in their entirety when water is available according to state law.

Acknowledgements

Data was collected with the help of Wyoming Game and Fish Department fisheries technician Will Weise. Tom Annear, Gordon Edwards, Lara Sweeney Gertsch, Rob Gipson, and Diana Sweet reviewed the manuscript and provided constructive comments that greatly improved the quality and clarity of the report.

Literature Cited

WGFD (Wyoming Game and Fish Department). 2005a. Wyoming Game and Fish Department management activities for Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). Administrative Report. Wyoming Game and Fish Department, Fish Division, Cheyenne.

Appendix A. Channel Maintenance Flows

Background

The term “channel maintenance flows” refers to flows that maintain existing channel morphology, riparian vegetation and floodplain function (US Forest Service 1997, Schmidt and Potyondy 2004). The basis and approach used below for defining channel maintenance flows applies to snowmelt-dominated gravel and cobble-bed (alluvial) streams. By definition, these are streams whose beds are dominated by loose material with median sizes larger than 0.08 in. and with a pavement or armor layer of coarser materials overlaying the channel bed. In these streams, bedload transport processes determine the size and shape of the channel and the character of habitat for aquatic organisms (Andrews 1984, Hill et al. 1991, Leopold 1994).

A flow regime that provides channel maintenance results in stream channels that are in approximate sediment equilibrium, where sediment export equals sediment import on average over a period of years (Leopold 1994, Carling 1995, Schmidt and Potyondy 2004). Thus, stream channel characteristics over space and time are a function of sediment input and flow (US Forest Service 1997). When sediment-moving flows are removed or reduced over a period of years, some gravel-bed channels respond with reductions in width and depth, rate of lateral migration, stream-bed elevation, stream side vegetation, water-carrying capacity, and changes in bed material composition.

Maintenance of channel features and floodplain function cannot be obtained by a single threshold flow (Kuhnle et al. 1999). Rather, a dynamic hydrograph within and between years is needed (Gordon 1995, Trush and McBain 2000, Schmidt and Potyondy 2004). High flows are needed in some years to scour the stream channel, prevent encroachment of stream banks, and deposit sediments to maintain a dynamic alternate bar morphology and a riparian community with diverse successional states. Low flow years are as valuable as high flow years on some streams to allow establishment of riparian seedlings on bars deposited in immediately preceding wet years (Trush and McBain 2000). The natural interaction of high and low flow years maintains riparian development and aquatic habitat by preventing annual scour that might occur from continuous high flow (allowing some riparian development) while at the same time preventing encroachment by riparian vegetation that could occur if flows were artificially reduced at all times.

Channel maintenance flows must be sufficient to move the entire volume and all sizes of material supplied to the channel from the watershed over a long-term period (Carling 1995, Schmidt and Potyondy 2004). A range of flows, under the dynamic hydrograph paradigm, provides this function. Infrequent high flows move large bed elements while the majority of the total volume of material is moved by more frequent but lower flows (Wolman and Miller 1960, Leopold 1994). In streams with a wide range of sediment sizes on the channel boundary, a range of flows may best represent the dominant discharge because different flow velocities are needed to mobilize different sizes of bed load and sediment. Kuhnle et al. (1999) noted “A system designed with one steady flow to transport the supplied mass of sediment would in all likelihood become unstable as the channel aggraded and could no longer convey the sediment and water supplied to it. A system designed with one steady flow to transport the supplied sediment size distribution would in all likelihood become unstable as the bed degraded and caused instability of the banks.”
Bedload Transport

A bedload transport model (FIGURE A-1) shows the total amount of bedload sediment transported over time (during which a full range of stream discharge [Q] values occur). Smaller discharges, such as the substrate mobilization flow (Q_m) occur more frequently, but not much sediment is moved during those times. The effective discharge (Q_e) mobilizes the greatest volume of sediment and also begins to transport some of the larger sediment particles (gravels and small cobbles). The bankfull discharge (Q_{bf}), in which flow begins to inundate the floodplain and which has a return interval of approximately 1.5 years on average, typically occurs near the Q_e. The discharge corresponding to the 25-year return interval (Q_{25}) represents the upper limit of the required channel maintenance flow regime, since the full range of mobile sediment materials move at flows up to this value, but these higher flows are infrequent. The more frequent discharges that occur between the Q_m and the Q_e move primarily smaller-sized particles (sand and small gravel) and prevent filling in of pools and other reduction in habitat complexity. Since these particles are deposited into the stream from the surrounding watershed with greater frequency, it is important to maintain a flow regime that provides sufficient conveyance properties (high frequency of moderate discharges) to move these particles through the system. However, alluvial streams, particularly those at higher elevations, also receive significant contributions of larger-sized particles from the surrounding watershed and restrictions to the flow regime that prevent or reduce the occurrence flows greater than Q_e (which are critical for moving these coarser materials) would result in gradual bedload accumulation of these larger particles. The net effect would be an alteration of existing channel forming processes and habitat (Bohn and King 2001). For this reason, flows up to the Q_{25} flow are required to maintain existing channel form and critical habitat features for local fish populations.

![FIGURE A-1. Total bedload transport as a function of bedload transport rate and flow frequency (adapted from Schmidt and Potyondy 2004).](image-url)
Channel Maintenance Flows Model

The model used to recommend flows to maintain the form and function of the stream channel is derived from bedload transport theory presented above. Based on these principles, the following channel maintenance flow model was developed by Dr. Luna Leopold and is used in this report to calculate the appropriate instream flows up to the Q25:

\[
Q_{\text{Recommendation}} = Q_f + \{(Q_s - Q_f) \times \left[\frac{(Q_s - Q_m)}{(Q_{bf} - Q_m)}\right]^{0.1}\}
\]

Where:
- \(Q_s\) = actual stream flow
- \(Q_f\) = fish flow (required to maintain fish habitat)
- \(Q_m\) = sediment mobilization flow = 0.8 * \(Q_b\)
- \(Q_{bf}\) = bankfull flow

The Leopold model calculations could be used to yield a continuous range of instream flow recommendations at flows between the \(Q_m\) and \(Q_{bf}\) for each cubic foot per second increase in discharge. However, this manner of flow regulation is complex and could prove burdensome to water managers. To facilitate flow administration while still ensuring reasonable flows for channel maintenance, we modified this aspect of the approach to recommend instream flows for four quartiles between the \(Q_m\) and \(Q_{bf}\).

Channel maintenance flow recommendations developed with the Leopold model require that only a portion of the flow remain instream for maintenance efforts. When total discharge is less than \(Q_m\), only fish flows are necessary; discharge between the fish habitat flows recommended in the main body of this report and \(Q_m\) is available for other uses (FIGURE A-2). Similarly, all discharge greater than the Q25 flow is less critical for channel maintenance purposes and available for other uses (these higher flows do allow a connection to the floodplain and it is valuable for infrequent inundation of riparian habitat to occur, but not for the physical maintenance of the stream channel). Between the \(Q_m\) and \(Q_{bf}\), the model is used to determine what proportion of flow should remain in channel for maintenance activities. For those relatively infrequent flows that occur in the range between \(Q_{bf}\) and the Q25, all flow is recommended to remain in the channel for these critical channel maintenance purposes.

Using this “dynamic hydrograph” approach, the volume of water required for channel maintenance is variable from year to year. During low-flow years, less water is recommended for channel maintenance because flows may not reach the defined channel maintenance level. In those years, most water in excess of fish habitat flows is available for other uses. The majority of flow for channel maintenance occurs during wet years. One benefit of this dynamic hydrograph approach is that the recommended flow is needed only when it is available in the channel and does not assert a claim for water that is not there as often happens with a threshold approach.
FIGURE A-2. General function of a dynamic hydrograph instream flow for fishery maintenance. Q_m is substrate mobilization flow, Q_{bf} is bankfull flow, and Q_{25} is the discharge with a 25-year return interval.

This channel maintenance flow model is the same as the one presented in Gordon (1995) and the Clark’s Fork instream flow water right (C112.0F) filed by the U.S. Forest Service with the Wyoming State Engineer, with one exception. The model presented in those documents used the average annual flow to represent Q_m. More recent work by Schmidt and Potyondy (2004) identified Q_m as occurring at a discharge of 0.8 times Q_{bf}. Initial particle transport begins at flows somewhat greater than average annual flows but lower than Q_{bf} (Schmidt and Potyondy 2004). Ryan (1996) and Emmett (1975) found the flows that generally initiated transport were between 0.3 and 0.5 of Q_{bf}. Movement of coarser particles begins at flows of about 0.5 to 0.8 of Q_{bf} (Leopold 1994, Carling 1995). Schmidt and Potyondy (2004) discuss phases of bedload movement and suggest that a flow trigger of 0.8 of the Q_{bf} “provides a good first approximation for general application” in defining flows needed to maintain channels.

Shoal Creek

Like all properly functioning rivers, Shoal Creek has a hydraulically connected watershed, floodplain, riparian zone, and stream channel. Bankfull and overbank flow are essential hydrologic characteristics for maintaining the habitat in and along these river segments in their existing dynamic form. These high flows flush sediments from the gravels and maintain channel form (i.e., depth, width, and pool and riffle configuration) by periodically scouring encroaching vegetation. Overbank flow maintains recruitment of riparian vegetation, encourages lateral movement of the channel, and recharges ground water tables. Instream flows that
maintain the connectivity of these processes over time and space are needed to maintain the existing fishery (Annear et al. 2004).

The Leopold model was used to develop channel maintenance recommendations for the Shoal Creek instream flow segment (TABLE A-1). The fish flow used in the analysis was the spawning flow (45 cfs). For naturally available flow levels less than the spawning flow, the channel maintenance instream flow recommendation is equal to natural flow. The spawning flow level is substantially less than Q_m (159 cfs). For the flow range between the spawning flow and Q_m, the channel maintenance flow recommendation is equal to the spawning flow (TABLE A-1). When naturally available flows range from Q_m to Q_{bf}, the Leopold formula is applied and results in incrementally greater amounts of water applied toward instream flow (TABLE A-1). At flows between Q_{bf} and Q_{25}, all stream flow is retained in the channel to perform maintenance functions. At flows greater than Q_{25}, only the Q_{25} is recommended for channel maintenance (FIGURE A-3).

TABLE A-1. Channel maintenance instream flow recommendations (May 1–June 30) to maintain existing channel forming processes and long-term aquatic habitat characteristics in the Shoal Creek instream flow segment.

<table>
<thead>
<tr>
<th>Flow Description</th>
<th>Available Flow (cfs)</th>
<th>Recommended Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td><Spawning Flow</td>
<td><45</td>
<td>All available flow</td>
</tr>
<tr>
<td>Spawning Flow to Q_m</td>
<td>45-159</td>
<td>45</td>
</tr>
<tr>
<td>Q_m to Q_{bf} – Quartile 1</td>
<td>160-169</td>
<td>125</td>
</tr>
<tr>
<td>Q_m to Q_{bf} – Quartile 2</td>
<td>170-179</td>
<td>155</td>
</tr>
<tr>
<td>Q_m to Q_{bf} – Quartile 3</td>
<td>180-189</td>
<td>172</td>
</tr>
<tr>
<td>Q_m to Q_{bf} – Quartile 4</td>
<td>190-199</td>
<td>186</td>
</tr>
<tr>
<td>Q_{bf} to Q_{25}</td>
<td>199-983</td>
<td>All available flow</td>
</tr>
<tr>
<td>> Q_{25}</td>
<td>\geq 984</td>
<td>984</td>
</tr>
</tbody>
</table>

FIGURE A-3 shows example annual hydrographs (randomly selected average and wet years) with channel maintenance flow recommendations implemented. Dry years are not shown because flows would not exceed the 159 cfs substrate mobilization threshold to initiate channel maintenance flows. In the representative average year, 1989, flow exceeded substrate mobilization flow on 10 days, which would trigger channel maintenance flow recommendations. In the representative wet year, 1986, these recommendations would apply for 30 days in May and June (FIGURE A-3). The proportion of water that would be available for consumptive use would be approximately 40 percent of the annual flow in an average year and 22 percent in a wet year.
Implementing these flow recommendations would have to include moderating the abrupt changes that occur at threshold flows with a ramping scheme that includes more gradual changes akin to a natural hydrograph. Such sharp flow increases and decreases evident in FIGURE A-3 would cause habitat loss through excessive scour and potential trout mortality due to stranding. The Index of Hydrologic Alteration (IHA; Richter et al. 1996) could provide a valuable reference to find suitable rates of change. Daily increases and decreases during runoff measured at the Little Granite Creek gage (HabiTech 2009) could serve as a guide for developing such ramping rate recommendations using the IHA.
Appendix B. Instream Flows in Wyoming

Guiding Principles for Instream Flow Recommendations

The analyses and interpretation of data collected for this report included consideration of the important components of an aquatic ecosystem and their relationship to stream flow. Stream ecosystems are complex, and maintaining this complexity requires an appropriate flow regime. This report describes recommendations for instream flows that were developed using an ecosystem approach that is consistent with contemporary understanding of stream complexity and effective resource management. The recommendations of the Instream Flow Council (IFC), an organization of state and provincial fishery and wildlife management agencies, provide comprehensive guidance on conducting instream flow studies. The approach described by the IFC includes consideration of three policy components (legal, institutional, and public involvement) and five riverine components (hydrology, geomorphology, biology, water quality and connectivity; Annear et al. 2004). Sections of this report were selected to reflect appropriate components of that template as closely as possible. By using the eight components described by the IFC as a guide, we strive to develop instream flow recommendations that work within Wyoming’s legal and institutional environment to maintain or improve important aquatic resources for public benefit while also employing a generally recognized flow quantification protocol.

Legal and Institutional Background

The Wyoming Game and Fish Department (WGFD) manages fish and wildlife resources under Title 23 of Wyoming statutes (W.S.). The WGFD was created and placed under the direction and supervision of the Wyoming Game and Fish Commission (Commission) in W.S. 23-1-401 and the responsibilities of the Commission and the WGFD are defined in W.S. 23-1-103. In these and associated statutes, the WGFD is charged with providing “. . . an adequate and flexible system for the control, propagation, management, protection and regulation of all Wyoming wildlife.” The WGFD mission statement is: “Conserving Wildlife - Serving People”, while the WGFD Fish Division mission statement details a stewardship role toward aquatic resources and the people who enjoy them. In a 2005 policy statement, the Commission formally assigned certain responsibilities for implementing instream flow water rights to the WGFD and specified procedures for notifying the Commission of instream flow filing activities. Briefly, the Department is directed to notify a Commission member when a stream in his or her district is identified as a candidate for filing. If that Commission member has concern about the proposed recommendation, it will be brought to the full Commission in open session. In addition, the Department will advise all Commission members at least two weeks prior to submitting materials for each instream flow filing recommendation, as well as notice of any changes in the Instream Flow Program.

The instream flow law, W.S. 41-3-1001-1014, was passed in 1986 and establishes that “unappropriated water flowing in any stream or drainage in Wyoming may be appropriated for instream flows to maintain or improve existing fisheries and declared a beneficial use...” The statute directs that the Commission is responsible for determining stream flows that will “maintain or improve” important fisheries. The WGFD fulfills this function under the general policy oversight of the Commission. Applications for instream flow water rights are signed and held by the Wyoming Water Development Office on behalf of the state should the water right be
approved by the State Engineer. The priority date for the instream flow water right is the day the application is received by the State Engineer.

One of the critical terms associated with the present instream flow statute relates to the concept of a “fishery.” From a natural resource perspective, a fishery includes the habitat and associated natural processes that are required to support fish populations. The primary components that comprise needed physical habitat include, but are not limited to, the stream channel, riparian zone and floodplain as well as the processes of sediment flux and riparian vegetation development that sustain those habitats (Annear et al. 2004). To maintain the existing dynamic character of an entire fishery, instream flow regimes must maintain the stream channel and its functional linkages to the riparian corridor and floodplain to perpetuate habitat structure and ecological function. The State Engineer has concluded that a full range of channel maintenance flow regimes is not consistent with the legislative intent of the instream flow statute. Therefore, until the interpretation of state water law changes, channel maintenance flow recommendations are not included on instream flow applications. Channel maintenance flow requirements are presented in Appendix A of this report and may be useful should opportunities arise in the future to secure a broader, more appropriate range of instream flow water rights for this important fishery management purpose.

Through March 2011, the WGFD has forwarded 110 instream flow water right applications to the WWDC for submission. Of these, the State Engineer has permitted 83 and the Board of Control has adjudicated five.

Public Participation

The general public has several opportunities to be involved in the process of identifying instream flow segments or commenting on instream flow applications. Individuals or groups can inform WGFD of their interest in protecting the fisheries in specific streams or stream segments with instream flow filings. In addition, planning and selection of future instream flow study sites are detailed in the Water Management Unit’s annual work schedules and five-year plans, which are available for public review and comment (either upon request or by visiting the WGFD web site at http://gf.state.wy.us/downloads/pdf/Fish/5yearplan2006.pdf). The public is also able to comment on instream flow water rights that have been filed with the State Engineer through public hearings (required by statute) that are conducted by the State Engineer’s Office for each proposed instream flow water right. The State Engineer uses these public hearings to gather information for consideration before issuing a decision on the instream flow water right application. To help the public better understand the details of instream flow filings and the public hearing process, WGFD personnel typically conduct an informal information meeting a week or two prior to each public hearing. Additional presentations to community or special interest groups at other times of year also provide opportunity for discussion and learning more about instream flow issues and processes.